AVALIAÇÃO DE PARÂMETROS PRODUTIVOS EM SISTEMAS DE ORDENAHA VOLUNTARIA DE VACAS LEITEIRAS

José Pedro Azevedo Ramos Pedrosa
José Pedro Azevedo Ramos Pedrosa

AVALIAÇÃO DE PARÂMETROS PRODUTIVOS EM SISTEMAS DE ORDENHA VOLUNTARIA DE VACAS LEITEIRAS

Nome do Curso de Mestrado
Mestrado Zootecnia

Trabalho efectuado sob a orientação do
Professor Doutor Joaquim Orlando Lima Cerqueira

Maio 2016
As doutrinas expressas neste trabalho são da exclusiva responsabilidade do autor.
Índice

Agradecimentos .. iii
Resumo ... iv
Abstract ... v
Lista de abreviaturas ... vii
Índice de Quadros ... viii
Índice de Figuras ... ix

1. INTRODUÇÃO ... 2

2. REVISÃO BIBLIOGRÁFICA .. 4
 2.1 Caraterização da produção .. 4
 2.2 Caraterização de raça Holstein Frísia ... 6
 2.2.1 Caraterísticas morfológicas dos animais .. 6
 2.2.2 Longevidade produtiva ... 7
 2.3 Lactação .. 8
 2.3.1 Curva de lactação .. 8
 2.3.2 Pico de lactação .. 9
 2.3.3 Persistência da lactação ... 10
 2.3.4 Dias em leite ... 11
 2.4 Bem-estar animal ... 11
 2.5 Sistema de Ordenha Voluntária ... 14
 2.5.1 Peso Corporal .. 17
 2.5.2 Alimentação no SOV ... 18
 2.5.3 Frequência de ordenha ... 20

3. TRABALHO EXPERIMENTAL .. 22
 3.1 Material ... 22
3.2 Metodologia ...22
3.3 Tratamento estatístico ..23
4. RESULTADOS ...25
 4.1 Análise de variância ...25
 4.1.1 Influência da exploração ..25
 4.1.2 Influência do número lactações ...27
 4.1.3 Influência da fase da lactação ...29
 4.1.4 Relação entre a produção diária e os dias em leite32
 4.2 Componentes principais ..32
5. DISCUSSÃO ...35
6. CONCLUSÕES ...38
7. REFERÊNCIAS BIBLIOGRÁFICAS ...39
Agradecimentos

Gostaria de expressar nesta página os meus sinceros agradecimentos a todos, os que de alguma forma, deram o seu contributo para que me fosse possível executar este relatório.

Em primeiro lugar, agradeço aos meus pais e a toda a minha família, o esforço que fizeram para me proporcionar as condições necessárias tanto para a realização deste mestrado como para este relatório, em particular;

Agradeço ao meu orientador de estágio, Eng.º Joaquim Orlando Lima Cerqueira, o seu apoio incondicional, a sua paciência, compreensão e incentivo, bem como por todos os conselhos e ensinamentos que me proporcionou ao longo deste trabalho. Agradeço também toda bibliografia que me disponibilizou;

A todos os Docentes, que de alguma forma, acompanharam o meu percurso académico e me transmitiram os conhecimentos necessários para a realização deste Mestrado;

Aos meus colegas de curso, que sempre me apoiaram e que comigo caminharam durante, este percurso;

Aos meus amigos mais próximos que através do seu apoio me ajudaram a chegar ao fim de todo este trajecto académico;

À empresa LELY, pela colaboração, pelo apoio prestado;

Em último lugar, mas não com menos importância, aos produtores e proprietários das explorações que integram o estudo, sem o qual não seria possível a realização da componente prática deste trabalho.

A TODOS UM MUITO OBRIGADA.
Resumo

Os sistemas voluntários de ordenha possibilitam que as vacas sejam ordenhadas sem a intervenção humana, através de um robot. Permitem aumentar a frequência de ordenha, que afeta positivamente a produção de leite e poderão ser benéficas para os animais, pois o elevado potencial produtivo da vaca leiteira moderna não se coaduna com a ordenha tradicional, realizada duas vezes ao dia. Os aspetos de bem-estar animal prendem-se sobretudo com a alimentação, interação social, desenho das instalações e tráfego dos animais. O objetivo deste trabalho consistiu na avaliação de parâmetros produtivos de vacas leiteiras em sistemas de ordenha voluntária.

Foram recolhidos 100431 registos de ordenha, em três explorações leiteiras na região de Entre Douro e Minho durante o período de maio de 2014 a abril de 2015. Os parâmetros analisados referem-se à ordem de lactação, fase de lactação, produção de leite, peso do animal, ingestão de concentrado, número de ordenhas e recusas. Para o tratamento estatístico recorreu-se ao programa SPSS, tendo-se utilizado um modelo de ANOVA e o teste de comparação de médias Tuckey. A relação entre os dias em lactação e a produção diária de leite fez-se por regressão linear.

A exploração com maior produção diária de leite (40,8 kg), demonstrou maior frequência de ordenhas (3,7/dia). Observou-se influência da ordem de lactação no peso vivo das vacas (≥ 4 lactações - 666,4 kg), correspondendo também a superior produção de leite (41,1 kg). Encontrou-se efeito da fase de lactação na produção diária de leite, com superioridade na 2ª fase (61 a 120 dias), com valores de 43,4 kg/vaca/dia. Todas as fases de lactação mostraram diferenças (P<0,05) para o peso vivo das vacas, aumentando gradualmente ao longo da lactação (1ª fase - 582,2 kg e 4ª fase - 643,6 kg). A maior quantidade de concentrado ingerido por animal (6,7 Kg) registou-se na segunda fase de lactação (60-120 dias). O número de recusas do SOV foi superior na primeira lactação (2,3 recusas) e na primeira fase de lactação (1,7 recusas).

Na relação entre produção diária (y) e os dias em leite (x) foi possível obter a equação: y = - 0,0438x - 44,583 (r = 0,5). Encontrou-se uma correlação positiva (0,7) entre a quantidade de concentrado ingerido e a produção diária de leite. Os dois componentes principais em conjunto revelaram 79,7% da variabilidade expressa.

Palavras-chave: Ordenha voluntária; Lactação; Produção de leite; Concentrado e Recusas.
Abstract

The volunteer milking systems allow the cows to be milked without human intervention, through the use of a robot. It allows the increase of frequency that the cows are milked, which benefits the milk production and can be beneficial for the animal, as the high productive potential of the modern milk cow is not consistent with the traditional milking system done twice a day. The aspects of animal welfare consist in feeding, social interaction, design of the facilities and the animal traffic. The aim of this work is to assess the productive parameters of milk cows where a volunteer milking system is used.

100431 milking registers were collected, in three dairy farms in the region of Entre Douro e Minho during the period of May of 2014 and April of 2015. The analyzed parameters refer to the order of lactation, lactation stage; milk production, animal’s weight, concentrate ingestion; number of times milked and refuses. To statistically treat the data, we used SPSS software, using an ANOVA model and the Turckey average comparison test. The relation between lactation days and daily milk production was done through linear regression.

The dairy farm with the higher daily milk production (40,8 kg) showed a higher milking frequency (3,7/day). We observed the influence of the lactation order in the live weight of the cows (≥ 4 lactations - 666,4 kg), corresponding to a superior milk production (41,1 kg). We found the effect of the stage of lactation in the daily milk production, superior in the 2nd stage (61 to 120 days) with results of 43,4 kg/cow/day. All stages of lactation show differences (P<0,05) to the live weight of the cows with gradual increase throughout the lactation (1ª stage - 582,2 kg and 4ª stage - 643,6 kg). The higher quantity of concentrate ingested (6,7 kg) occurred during the second stage of lactation (60-120 days). The number of refuses of the VMS was higher in the first lactation (2,3 refusals) and in the first stage of lactation (1,7 refuses).

With the relationship between the daily production (y) and the milk production days (x), it was possible to obtain the following equation: y = - 0,0438x - 44,583 (r = 0,5). We found a positive correlation (0,7) between the quantity of concentrate ingested and the daily milk production. The two main components altogether revealed a 79,7% of the expressed variable.

Key-words: Volunteer Milking; Lactation; Milk Production; Concentrate and Refusals.
ARTIGO SUBMETIDO NO ÂMBITO DA TESE

para a revista Ruminantes (a revista da agropecuária):

Lista de abreviaturas

% – Percentagem

ANABLE – Associação Nacional para o Melhoramento dos Bovinos Leiteiros

BEA – Bem-Estar Animal

C100KgLE – concentrado por cada 100 quilogramas de leite

CV – Coeficiente de variação

DLACT – Dias em lactação

DP – Desvio padrão

INGESTAO – concentrado ingerido

Kg – Quilogramas

Nº – Número

PRODDIA – Produção diária

Sig. – Nível de Significância

SOV – Sistema de Ordenha Voluntária

Ton – Tonelada

TOTCONC – total concentrado
Índice de Quadros

Quadro 2.1 - Produção de leite de vaca recolhida na EU-28 em 2014 ...4
Quadro 2.2 - Produção de leite de vaca em Portugal no período de 2000 a 20145
Quadro 2.3 - Variação do peso de acordo com a ordem de lactação ..18
Quadro 2.4 - Número de ordenhas diárias segundo vários autores ...20
Quadro 3.1 - Distribuição das explorações alvo de estudo e suas principais características 22
Quadro 4.1 - Efeito da exploração nos dias em leite (DEL) ..26
Quadro 4.2 - Efeito da exploração na ingestão de concentrado no SOV ..26
Quadro 4.3 - Efeito do número de lactações na produção diária de leite (kg/dia)27
Quadro 4.4 - Efeito do número lactações no peso vivo das vacas ...27
Quadro 4.5 - Efeito do número de lactações na ingestão de concentrado no SOV28
Quadro 4.6 - Efeito do número de lactações no número de recusas ...28
Quadro 4.7 - Efeito da fase de lactação na ingestão de concentrado no SOV30
Quadro 4.8 - Efeito da fase de lactação no número de recusas ..31
Quadro 4.9 - Correlações entre os parâmetros analisados no SOV ...32
Quadro 4.10 - Componentes principais dos diferentes parâmetros do SOV33
Índice de Figuras

Figura 2.1 - Curva de lactação de uma vaca Holstein na segunda lactação (adaptado de Ehrlich, 2011) .. 9
Figura 2.2 – Indicadores utilizados na avaliação do bem-estar animal (adaptado de EFSA, 2006). ... 13
Figura 2.3 - Evolução do número de SOV nas explorações agrícolas em todo o mundo, desde a primeira instalação em 1992 (adaptado de Koning, 2010) .. 15
Figura 2.4 - Ilustração de uma exploração de vacas leiteiras equipada com SOV 16
Figura 4.1 - Efeito da exploração na produção de leite e número de ordenhas diárias 25
Figura 4.2 - Efeito da fase de lactação na produção diária de leite 29
Figura 4.3 - Efeito da fase de lactação no peso vivo das vacas 30
Figura 4.4 - Distribuição das produções diárias em função dos dias em leite 32
Figura 4.5 - Projeção das variáveis originais sobre os eixos definidos pelos dois componentes principais ... 34
1. INTRODUÇÃO

Analisando o sector da produção leiteira, observa-se uma relevante evolução ao longo dos últimos anos na implementação de novos recursos tecnológicos nas explorações. A nível mundial tem sido possível verificar a automatização dos sistemas produtivos com a finalidade de optimizar a produção e a utilização de mão-de-obra. Short (2004), destaca o papel da tecnologia na evolução da indústria de laticínios, afirmando que mudou a forma como o leite é produzido, com o crescimento das empresas e a especialização que está a ser possível graças à tecnologia. Pastell et al., (2006) destacam a existência de um movimento mundial para a automatização com o objetivo de otimizar a produção e a mão-de-obra, o que também se aplica às explorações leiteiras, sendo alvo de grandes avanços tecnológicos, principalmente na automatização do maneio alimentar e da operação de ordenha.

Exemplo deste avanço técnico na produção leiteira é dado pelo sistema de ordenha voluntária (SOV) que de acordo com Halachmi et al. (2002), patenteia um dos avanços mais importantes na produção de leite. Na década de 1990, foram fabricadas e comercializadas as primeiras unidades de SOV de primeira geração, podendo ser esta data considerada como o início da expansão deste sistema pelo mundo (Rasmussen e Lind, 1999).

A implementação dos SOV nas explorações teve um impacto sobre os agricultores e a forma como se relacionam com as suas vacas (Seabrook, 1992), reduz o contato físico entre os seres humanos e as vacas na sala de ordenha, enquanto aumenta potencialmente o tempo que os técnicos podem passar a analisar as vacas (Owen, 2003).

Este tipo de sistemas permitem analisar alguns aspetos da saúde vaca que seriam realizados durante a rotina de ordenha, gerando um conjunto de dados relativos a cada animal de forma individual ou em grupo. Neste sentido, a progressiva modernização a que as explorações leiteiras foram sujeitas, conduziu a modificações ao nível do maneio e da gestão do efetivo, quando equiparados aos sistemas convencionais de produção, sendo que os animais sujeitos ao SOV apresentam maior liberdade para escolherem os seus ritmos diários repercutindo-se no bem-estar e comportamento das vacas (Wiktorsson e Sorensen, 2004).
Este trabalho teve como objetivo a avaliação dos principais parâmetros produtivos em três explorações leiteiras equipadas com sistemas de ordenha voluntária, e estudo da influência de alguns fatores na produtividade das vacas leiteiras.
2. REVISÃO BIBLIOGRÁFICA

2.1 Caraterização da produção

O mundo tem presenciado a um enorme avanço tecnológico, e o setor leiteiro não é exceção. Estes avanços viabilizaram uma maior competência da produção que visa sustentar uma população que em 2050 se espera ultrapassar os 9 mil milhões de habitantes (ONU, 2010). Nos últimos tempos, o setor da produção de leite tem evoluído, existindo grandes avanços nas máquinas de ordenha, na genética animal, assim como na área da nutrição e gestão das explorações que, ao serem combinadas resultaram na indústria moderna da produção de leite (Jacobs e Siegford, 2012).

A produção mundial de leite tem-se desenvolvido substancialmente (Wolf, 2003), sendo que nas últimas décadas, o volume de leite produzido aumentou mais de 50%, isto é, entre 1982 e 2012 houve um incremento de 482 para 754 milhões de toneladas de leite (FAO, 2015). A produção de leite e produtos lácteos tem uma estrutura diversificada nos Estados-Membros da UE, quer em termos de dimensão das explorações e dos seus efetivos leiteiros como de produção de leite propriamente dita. De acordo com o Eurostat (2016) de todo o leite de vaca recolhido pela UE-28 pelas indústrias de lacticínios em 2014, cerca de um quinto (21,2%) era proveniente da Alemanha, enquanto pouco mais de um sexto do total (17,1%) oriundo de França.

Quadro 2.1 - Produção de leite de vaca recolhida na EU-28 em 2014

<table>
<thead>
<tr>
<th>País</th>
<th>Total leite recolhido (Ton)</th>
<th>País</th>
<th>Total leite recolhido (Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bélgica</td>
<td>3.689</td>
<td>Letónia</td>
<td>804</td>
</tr>
<tr>
<td>Bulgária</td>
<td>495</td>
<td>Lituânia</td>
<td>1.436</td>
</tr>
<tr>
<td>República Checa</td>
<td>2.370</td>
<td>Luxemburgo</td>
<td>306</td>
</tr>
<tr>
<td>Dinamarca</td>
<td>5.110</td>
<td>Hungria</td>
<td>1.470</td>
</tr>
<tr>
<td>Alemanha</td>
<td>31.375</td>
<td>Malta</td>
<td>43</td>
</tr>
<tr>
<td>Estónia</td>
<td>730</td>
<td>Holanda</td>
<td>12.473</td>
</tr>
<tr>
<td>Irlanda</td>
<td>5.802</td>
<td>Áustria</td>
<td>3.062</td>
</tr>
<tr>
<td>Grécia</td>
<td>615</td>
<td>Polonia</td>
<td>10.602</td>
</tr>
<tr>
<td>Espanha</td>
<td>6.679</td>
<td>Portugal</td>
<td>1.924</td>
</tr>
<tr>
<td>França</td>
<td>25.261</td>
<td>Romania</td>
<td>997</td>
</tr>
<tr>
<td>Croácia</td>
<td>504</td>
<td>Eslovénia</td>
<td>532</td>
</tr>
<tr>
<td>Itália</td>
<td>10.500</td>
<td>Eslováquia</td>
<td>844</td>
</tr>
<tr>
<td>Chipre</td>
<td>165</td>
<td>Finlândia</td>
<td>2.357</td>
</tr>
<tr>
<td>Suécia</td>
<td>2.931</td>
<td>Reino unido</td>
<td>14.829</td>
</tr>
</tbody>
</table>

Fonte: Adaptado de Eurostat (2016)
Segundo Neves (2010), a atividade leiteira é um setor agrícola tradicional em Portugal que se tem modernizado nos últimos anos para cumprir as exigências impostas pelas reformas da PAC e as transformações do mercado. São muitas as explorações que têm cessado a sua atividade devido à impossibilidade de continuarem a produzir de forma sustentada. O autor refere ainda que em 1995 havia 80 mil produtores de leite em Portugal, e em 2010 eram apenas 11,4 mil, com a agravante de cerca de 3.000 agricultores se encontrarem em situação de pré-falência, ou seja, num período de dez anos (1999-2009), Portugal perdeu 66% dos seus produtores.

Quadro 2.2 - Produção de leite de vaca em Portugal no período de 2000 a 2014

<table>
<thead>
<tr>
<th>Ano</th>
<th>Total leite recolhido (Ton)</th>
<th>Ano</th>
<th>Total leite recolhido (Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1 892,90</td>
<td>2008</td>
<td>1 886,22</td>
</tr>
<tr>
<td>2001</td>
<td>1 822,55</td>
<td>2009</td>
<td>1 867,64</td>
</tr>
<tr>
<td>2002</td>
<td>1 932,18</td>
<td>2010</td>
<td>1 828,85</td>
</tr>
<tr>
<td>2003</td>
<td>1 820,18</td>
<td>2011</td>
<td>1 841,79</td>
</tr>
<tr>
<td>2004</td>
<td>1 873,30</td>
<td>2012</td>
<td>1 861,40</td>
</tr>
<tr>
<td>2005</td>
<td>1 820,64</td>
<td>2013</td>
<td>1 777,06</td>
</tr>
<tr>
<td>2006</td>
<td>1 851,48</td>
<td>2014</td>
<td>1 924,13</td>
</tr>
<tr>
<td>2007</td>
<td>1 837,19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Adaptado de Eurostat (2016)

2.2 Caraterização de raça Holstein Frísia

O grande desenvolvimento genético destes animais iniciou-se no século XIX com o trabalho efetuado por criadores holandeses e com a exportação dos primeiros exemplares para a América do Norte. As primeiras referências em Portugal de animais com este padrão reportam-se ao século XVII, nas regiões em redor de Lisboa, lentamente foi-se espalhando por todo o país, tendo encontrado na foz do rio Vouga o espaço ideal para o seu desenvolvimento. Aveiro e a região circundante passaram a ser conhecidas como o solar da vaca leiteira. Hoje em dia esta raça de aptidão leiteira está disseminada por todo o país embora com maior densidade no noroeste português, e com os efetivos de maior dimensão situados no sul do país (APCRF, 2008).

2.2.1 Características morfológicas dos animais

Os animais da raça Holstein Frísia possuem uma morfologia nitidamente de aptidão leiteira, facilmente observado no grande desenvolvimento do sistema mamário e com uma capacidade corporal que lhe permite consumir grandes quantidades de forragem e valorizá-la na produção de leite. A vaca Holstein Frísia é um animal precoce de grande corpulência, podendo atingir 1,54 m de altura à garupa e atingir pesos vivos de 600 a 700 Kg (APCRF, 2008).

Apresenta como caraterística inconfundível, a sua pelagem malhada de preto, no entanto existe um gene recessivo, através do qual os animais manifestam uma coloração vermelha e branca (Gillespie e Flanders, 2010).

Em relação às caraterísticas morfológicas, os bovinos Holstein Frísia são o resultado da seleção a que foram submetidos (Blanco e Gasque, 2001). A cabeça destes animais é comprida e dolicocéfala, com os olhos bem aflorados e o focinho largo. O pescoço é comprido e delgado, sendo a barbela pequena, o peito largo e as costelas arqueadas e profundas. A garupa é larga com os ossos ilíacos bastante salientes. O úbere é simétrico, volumoso com ligamentos fortes e irrigação abundante, a sua pele é macia e fina, coberta de pelos sedosos e curtos, apresentando grande capacidade em animais de alta produção. Contudo em animais de idade avançada o úbere pode demonstrar certos defeitos como o relaxamento do ligamento suspensor, desenvolvimento inadequado dos tetos anteriores em relação aos posteriores, dando origem ao designado úbere caído. A estrutura óssea é bastante forte, o corpo é volumoso, tipicamente leiteiro, na forma clássica de cunha,
espáduas salientes, dorso comprido e cortante, cauda fina e bem inserida. Possuem membros altos, nádegas retas, são muito musculosas e apresentam um contorno harmonioso (APCRF, 2008).

2.2.2 Longevidade produtiva

A produção de leite por lactação aumentou consideravelmente nas últimas décadas, enquanto o período de vida produtiva encurtou (Hare et al., 2006). A maior produtividade por animal garante melhores resultados económicos e melhora a eficiência económica, que resulta principalmente do leite produzido e da longevidade dos animais (Heins et al, 2012; Martens e Bange de 2013).

A capacidade produtiva das vacas leiteiras tem sido incrementada, resultando em produções muito superiores do que naturalmente produziria para alimentar um vitelo (Phillips, 2010). Como consequência deste desempenho produtivo a vaca leiteira tornou-se mais suscetível à doença e manifesta índices reprodutivos inferiores, o que diminui consideravelmente a sua longevidade na exploração (Stefanowska et al., 2001; Phillips, 2010).

Uma maior longevidade garante mais lactações com produção de leite superior (Donaldson, 2006). Segundo Guerra (1997) verifica-se um aumento de produção de leite até à terceira lactação, diminuindo posteriormente à medida que o animal vai envelhecendo. No entanto as probabilidades de refugo aumentam muito a cada lactação (Fetrow et al., 2006). Beever (2006) refere que cada animal realiza 3,3 lactações em média, já o estudo realizado por Hanks e Kossaibati (2014), refere que o número de lactações médio foi de 3,7. Todavia tendo em consideração os resultados publicados por ANABLE (2014) as vacas leiteiras realizam em média 2,5 lactações por animal.

Existem diversos fatores capazes de afetar a produtividade e o tempo de vida das vacas de alta produção, sendo os mais importantes, a raça, o meio ambiente, a alimentação e a fertilidade (Petrović et al, 2007; Terawaki e Ducrocq, 2009). Para Bascom e Young, (1998) as causas reprodutivas e as mastites apresentam-se como as principais razões que levam ao refugo precoce de uma vaca.

Para Esslemont et al, (2001) a decisão de refugo depende da política do produtor, mas é essencialmente baseada no rendimento actual ou previsível da vaca, fase da lactação,
patrimônio genético, preço do leite, número de vacas/novilhas disponíveis para substituição, número de vacas destinadas a refugo por causas não reprodutivas.

2.3 Lactação

2.3.1 Curva de lactação

Desde o início do século passado, que a curva de lactação em vacas leiteiras tem sido investigada repetidamente (Brody et al., 1923; Gaines, 1926), mas ainda mais recentemente é assunto de pesquisa (Macciotta et al., 2005; Madouasse et al., 2012). Atualmente os modelos da curva de lactação são utilizados principalmente, para estimar fatores genéticos, tais como heritabilidade ou efeitos biológicos e ambientais sobre a lactação (Druet et al., 2003).

A sua forma é influenciada por consecutivas lactações, idade ao parto (Macciotta et al., 2006), Cole et al., 2009). Diferentes formas de maneio e alimentação, assim como diferentes localizações geográficas influenciam a produção de leite (Bebbington et al., 2009; Andersen et al., 2011).

A análise da curva de lactação de um animal, para além de auxiliar o produtor na melhoria das práticas de maneio e nutrição, também pode ser utilizada para estimar a produção total de leite a partir de registos inacabados, tornando assim possível detetar um animal potencialmente mais produtivo, ou mais globalmente verificar se o efetivo demonstra a performance desejada (Morant e Gnanasakthy 1989).

É possível observar na curva de lactação (Figura 2.1), a existência de dois períodos distintos. O primeiro caracterizado por uma fase ascendente na produção, desde o parto até
aproximadamente aos 50 dias de lactação, denominado por pico da lactação. O segundo período é caracterizado por uma fase descendente da curva de lactação, em que a produção de leite vai decrescendo até ao término da lactação.

![Curva de lactação de uma vaca Holstein na segunda lactação](adaptado de Ehrlich, 2011)

De acordo com Grossman et al. (1999), uma curva de lactação típica apresenta uma fase crescente, que se estende até cerca de 35 dias após o parto, uma fase de pico, representada pela produção máxima observada, seguida de uma terceira fase de declínio contínuo até ao final da lactação. Porém, existem certas características da curva de lactação que determinam a sua forma, tais como a persistência e o pico da lactação. As curvas de lactação podem ser usadas para estabelecer um tempo adequado para que o produtor determine o momento da secagem da vaca (Chang et al., 2001).

2.3.2 Pico de lactação

O pico de lactação foi definido como a máxima produção de leite para uma determinada ordem de parto e nível produtivo do efetivo (Molento, et al., 2004). Este pico segundo Mahieu (1985) corresponde ao ponto onde a produção é máxima, sendo atingido entre a 3ª e a 5ª semana após o parto.

Para Hutjens (1999), as vacas atingem o seu pico de produção por volta dos 40 a 60 dias após o parto. Num estudo efetuado por Dematawewa et al. (2007), estes observaram que as vacas de primeira lactação obtiveram produções de 33,3 Kg no pico de lactação, tendo este
ocorrido aos 94 dias após o parto. Para vacas multiparas (≥3 partos) observaram uma produção no pico de 44,3 Kg aos 51 dias de lactação. Segundo Pettersson et al. (2011), o pico de produção de leite foi superior e mais precoce em vacas multiparas, com a produção total da lactação superior também nestes animais, comparativamente às primíparas.

Quando as vacas manifestam produções mais elevadas no pico de lactação, tendem a exibir uma diminuição mais rápida da produção de leite ao longo da lactação (Tekerli et al., 2000).

2.3.3 Persistência da lactação

A persistência pode ser definida como a capacidade de uma vaca para manter a produção de leite em níveis elevados no período subsequente ao pico (Jamrozik et al., 1997). Sorensen et al., (2008) referem que a persistência da lactação é definida como a inclinação da queda na produção de leite após o pico de lactação. Deste modo entende-se como uma vaca mais persistente aquela que, quando comparada com outra de produção equivalente, possui pico mais baixo e como consequência uma curva mais achatada. Isso demonstra uma distribuição mais equilibrada da produção de leite no decorrer da lactação (Gengler, 1996).

Elevada persistência está associada com uma taxa lenta de declínio na produção após o pico de produção, enquanto a baixa persistência está associada a uma elevada taxa de declínio. Uma vaca com maior persistência tende a incorrer em menos custos de alimentação, saúde e custos reprodutivos (Solkner e Fuchs, 1987). Dada a mesma produção, lactações mais persistentes são caraterizadas por menor pico de produção (Dekkers et al., 1998). Uma possível explicação desse desempenho é o baixo desenvolvimento da glândula mamária de vacas primíparas (Solkner e Fuchs, 1987). Outro fator é a idade, sendo observada uma tendência de diminuição dos índices de persistência em vacas mais velhas (Kumar et al., 1999). Tem sido demonstrado que a persistência na primeira lactação é maior do que nas lactações subsequentes (Tekerli et al., 2000).

Existem outros fatores que possuem um impacto negativo na persistência da lactação como o caso da genética do animal, do número de lactação, da fase de gestação (Norgaard et al., 2005) da frequência de ordenha e da nutrição animal (Sorensen et al., 2006).
Para Tekerli et al. (2000) os animais mais persistentes num efetivo podem contribuir para a diminuição dos custos de produção, pois a persistência na lactação possui uma relação económica positiva no sistema de produção leiteira.

2.3.4 Dias em leite

O controlo da eficácia reprodutiva depende da recolha e análise de dados relativos à produção de leite, à alimentação, a distúrbios e parâmetros reprodutivos. Actualmente, o recurso a sistemas de informação possibilita aos técnicos o acesso à informação em qualquer altura e local. Neste sentido, torna-se mais célere estimar tendências e definir novos objetivos produtivos e reprodutivos (Mee 2007).

A diminuição da taxa de conceção à primeira inseminação em vacas leiteiras tem sido relatada em todo o mundo, resultando num aumento do número de inseminações por prenhes (Lucy, 2001). Assim a melhoria da fertilidade é provavelmente um dos principais desafios a enfrentar pelas explorações leiteiras. As vacas que permanecem vazias durante um período prolongado aumentam o intervalo entre partos e consequentemente os dias em leite (DEL). Segundo Ribas (1997), valores entre 150 a 170 dias são considerados os mais adequados para este parâmetro. O mesmo autor refere ainda que valores superiores a 180 dias são considerados críticos numa exploração leiteira.

A fertilidade nas vacas leiteiras pode ser influenciada por um conjunto de fatores, por vezes difíceis de controlar de forma individual. Entre esses fatores encontram-se o aumento da produção de leite, a genética, a nutrição, doenças reprodutivas, causas ambientais e as práticas de maneio (Veerkamp e Beerda 2007; Farin e Slenning 2001).

2.4 Bem-estar animal

Para Hughes (1976), o conceito de bem-estar animal (BEA) é “um estado de completa saúde mental e física do animal em harmonia com o meio ambiente”. Tannenbaum (1991) refere-se a uma boa ou satisfatória qualidade de vida que envolve determinados aspetos referentes ao animal tal como a saúde, a felicidade e a longevidade. De acordo com Sorensen et al. (2002), pode-se definir bem-estar animal como um estado em que o animal se apresenta saudável, confortável, bem alimentado, num ambiente seguro e onde possa expressar o seu comportamento normal, e que não sofra dor, medo ou stresse.
O BEA assume uma parte relevante na aceitação ética de qualquer exploração pecuária de bovinos (Rutherford et al., 2009; Phillips, 2010). Na União Europeia, o projeto Welfare Quality demonstrou que os consumidores na UE estão preocupados com o bem-estar dos animais de produção (Ingenbleek e Immink, 2011). O valor não econômico da saúde animal deve ser levado em consideração, já que este está associado a um crescente interesse dos consumidores em aspectos sociais, éticos e de bem-estar animal para a obtenção de produtos de qualidade (Hietala et al., 2014).

Qualquer que seja o sistema de manejio e as instalações escolhidas, a vaca leiteira deve ser tratada de forma adequada e deve-lhe ser proporcionado um local cômodo e limpo para descansar, assim como fácil acesso a alimento e água (Cook e Nordlund, 2009). O principal desafio consiste em aperfeiçoar as formas de medir o grau de bem-estar dos animais, para que as avaliações possam ser utilizadas no sentido da melhoria das relações homem-animal (Broom e Mclento, 2004).

Deste modo e num período em que o BEA assume um caráter fundamental na receita de uma exploração leiteira, o Farm Animal Welfare Council (2009), no seu código de bem-estar para animais de produção, baseia-se no reconhecimento das “Cinco Liberdades” inerentes aos animais: liberdade fisiológica que se resume em ausência de fome e sede, tendo disponível o acesso a água fresca de qualidade e a uma dieta adequada às condições fisiológicas dos animais; liberdade ambiental que prevê o alojamento dos animais de produção em edificações apropriadas, livre de desconforto; liberdade sanitária, ausência de dor, doenças e lesões; liberdade de comportamento, para expressar o seu comportamento natural e liberdade psicológica, ausência de medo, estresse e ansiedade, assegurando condições e manejo que evitem sofrimento mental.

Consequentemente têm sido desenvolvidos indicadores comportamentais e de saúde, que permitem auxiliar na avaliação de bem-estar de uma forma completa (Broom, 1991). O desenvolvimento de métodos para avaliar o nível de BEA, permitem recorrer aos mesmos de forma sistematizada (Figura 2.2), resultando em protocolos de avaliação de bem-estar.
Figura 2.2 – Indicadores utilizados na avaliação do bem-estar animal (adaptado de EFSA, 2006).

Sorensen et al. (2002), mencionam que tem ocorrido desenvolvimentos nos sistemas de avaliação do BEA, tendo em consideração os sistemas de exploração de vacas leiteiras sujeitas a equipamentos automáticos. Assim a crescente inquietação relativamente ao BEA, requer uma avaliação dos impactos desta tecnologia na saúde da vaca, na fisiologia e no seu comportamento (Hillerton et al., 2004).

Diversos autores (Hogeveen et al., 2001; Pirlo et al., 2005; Edwards et al., 2014; Lee e Choudhary, 2006) referem que é importante que os animais tenham uma experiência positiva na ordenha e não possuam receio de usar o SOV. A implementação dos SOV atualmente utilizados permitem que as vacas possam escolher livremente o momento de ordenha e ajustar dinamicamente o intervalo entre ordenhas durante toda a lactação, bem como ao longo do dia (Carlstrom et al., 2013).

De acordo com Pastell et al. (2006) foram identificadas várias situações onde a introdução de um SOV contribuiu para o bem-estar dos animais através da identificação precoce de algumas patologias. Exemplos disso é a presença de acessórios que permitem a identificação da ocorrência de mastites (Hogeveen e Ouweljes, 2003) e presença de patologias podais (Pastell et al., 2006), que conduzem a perdas financeiras substanciais (Sprecher et al., 1997; Green, 2009) e constituem indicadores importantes do reduzido BEA da vaca (von Keyserlingk et al., 2009).
Desta forma a introdução de SOV na exploração não se resume somente em adoptar um novo método de ordenha, é principalmente optar por um novo método de exploração de vacas leiteiras, que necessita de alterações profundas na alimentação e na estabulação e que afeta não só a produção e a qualidade do leite, mas também o comportamento e BEA (Pirlo et al., 2005). Para Cortez e Cortez (2006) os produtores começam a compreender que a rentabilidade das suas explorações depende de vários fatores, como o maneio alimentar nas diferenciadas fases de produção, saúde do úbere, controlo reprodutivo, e no conforto dos seus animais.

Embora as questões relacionadas com o BEA tenham atraído bastante interesse nos últimos anos, ainda se encontra longe de ser uma aposta nas explorações e a explicação para este facto está relacionado com o investimento financeiro adicional para a maioria dos produtores cumprirem com as normas de bem-estar animal (Oltenacu e Broom 2010). No entanto as explorações que efetuam instalação de SOV levam muito em linha de conta as principais preocupações de bem-estar em vacas leiteiras.

2.5 Sistema de Ordenha Voluntária

A ordenha é uma atividade que requer mão-de-obra qualificada. Esta foi uma das razões pela qual a ordenha automática de vacas leiteiras despertou um grande interesse entre os produtores em vários países do mundo, sendo a sua utilização nas explorações pecuárias cada vez mais comum. Deste modo o desenvolvimento da ordenha automática foi a necessidade de melhorar a eficácia do trabalho devido aos custos crescentes com a mão-de-obra em diversos países (Rossing et al, 1985; Rossing e Hogewerf, 1997; Lind et al, 2000). Os SOV foram introduzidos nas explorações leiteiras à cerca de 24 anos atrás. De acordo com Koning et al., (2002) a instalação do primeiro SOV ocorreu em 1992 na Holanda.
Figura 2.3 - Evolução do número de SOV nas explorações agrícolas em todo o mundo, desde a primeira instalação em 1992 (adaptado de Koning, 2010)

Uma análise da evolução nestes últimos anos permite-nos constatar que, a modernização dos sistemas de ordenha se tem realizado em períodos de tempo cada vez mais curtos, acompanhando o avanço da tecnologia (Pastell et al., 2006). Neste sentido a instalação destes sistemas de ordenha tornou-se uma prática comum em explorações vocacionadas para a produção de leite e até ao final do ano de 2003 o número de explorações equipadas rondava os 2200 SOV (Koning e Rodenburg, 2004). O número de instalações apetrechadas com esta tecnologia tem crescido consideravelmente. Em 2010, aproximadamente 10000 explorações pecuárias tinham adotado o SOV em todo o mundo (Koning, 2011).

As motivações para a instalação de um SOV podem ser diversas. De acordo com os autores Hogeveen et al. (2004), as principais motivações para os agricultores investirem neste tipo de equipamentos em detrimento de um sistema convencional de ordenha, assentam em 5 fatores: menos trabalho, o aumento da flexibilidade de horário, a possibilidade de ordenhar as vacas mais do que duas vezes por dia, substituição de um empregado ou a necessidade de um novo sistema de ordenha.

Este sistema de ordenha difere da tradicional ordenha mecânica devido ao facto de se realizar automaticamente, de modo a que nenhuma operação no processo de ordenha necessite da presença do tratador. Possui integrado um sistema de identificação animal, um sistema de limpeza do ûbere, bloco de ordenha e um programa de controlo de anomalias.
relacionadas com o animal. O SOV é constituído por uma jaula de contenção, um sistema de detecção de tetos, um braço do robot, um sistema de limpeza de tetos, o sistema de controlo (sensores e software) e o sistema de ordenha. (Meijering et al., 2002).

Figura 2.4 - Ilustração de uma exploração de vacas leiteiras equipada com SOV

A produção de leite nos bovinos está positivamente correlacionada à frequência de ordenhas. Para Wade et al., (2004) a adoção do SOV apresenta como benefícios a diminuição da mão-de-obra e o aumento da produção por vaca. Segundo Kruip et al. (2000) a melhor contribuição do SOV para as explorações leiteiras é a possibilidade de obter mais leite, com ordenhas extra e com menos trabalho. Outra das vantagens do SOV está relacionada com a possibilidade de controlar a frequência de ordenha em cada animal, ajustando ao nível de produção ou ao seu estado de lactação sem envolver custos adicionais (Hogeveen et al., 2001; Svennersten-Sjauna e Pettersson, 2008).
Os produtores com SOV possuem a capacidade de controlar muitos parâmetros relacionados com a ordenha e com o desempenho das suas vacas. A produção de leite, a frequência de ordenha e o intervalo entre ordenhas são apenas alguns parâmetros que podem ser analisados com recurso ao SOV. Estes parâmetros são também importantes para alcançar o desempenho ideal para cada vaca (Gygax et al., 2007).

Os dados recolhidos pelo SOV são automaticamente armazenados numa base de dados, conferindo ao produtor a capacidade de controlar, gerir e configurar as condições em que os animais devem ser ordenhados. Os dados recolhidos são processados com recurso a um programa informático específico (Koning e Ouweltjes, 2000; Hogeveen e Ouweltjes, 2003). Estes sistemas de informação de gestão do equipamento fornecem ao produtor um conjunto de relatórios e alertas conseguindo estabelecer contato telefónico com o produtor através de dispositivos móveis, sempre que seja necessária alguma intervenção no SOV (Koning e Rodenburg, 2004).

No entanto o SOV também revela algumas desvantagens, sendo a principal o custo do equipamento. Para um dado efetivo, o custo inicial do equipamento é muitas vezes de dois a três vezes o necessário para uma sala de ordenha tradicional. Outra potencial desvantagem situa-se ao nível da qualidade do leite (Klungel et al., 2000). Com o aumento da produção por vaca em virtude da maior frequência de ordenha, a concentração de gordura no leite é ligeiramente inferior relativamente à obtida com a ordenha tradicional, efetuada duas vezes por dia (Klungel et al., 2000; Shoshani e Chaffer, 2002).

2.5.1 Peso Corporal

O peso corporal é uma característica dinâmica que é influenciada pelo tamanho de cada animal, pela ingestão de alimentos e pela condição corporal. As alterações no peso são também influenciadas pela idade do animal. No caso de uma vaca primípara poderia perder condição corporal no início da lactação, mas ainda assim ganhar peso pelo fato de se encontrar em fase de crescimento. A perda de peso durante o início da lactação é devida principalmente à perda de condição corporal (Toshniwal et al., 2008). Após o parto, o início da lactação é caracterizado por um rápido aumento da produção de leite, um aumento lento da capacidade de ingestão diária de alimento e um acréscimo da mobilização de tecido adiposo (Buckley et al., 2003).
O peso corporal das vacas é frequentemente utilizado como uma ferramenta de gestão para o cálculo da dieta, que pode determinar a data da inseminação de novilhas e ainda usado como medida do tamanho do corpo. O peso corporal é afetado por diversos fatores, tais como a altura à garupa (Schröder e Staufenbiel, 2006), a fase da gestação (Prior e Laster, 1979), pelo número de lactação (Enevoldsen e Kristensen, 1997) e pela fase da lactação (Jaurena et al., 2005). As alterações no peso podem ainda estar associadas à presença de patologias (Maltz et al., 1997) ou à ocorrência do estro (Maltz et al., 1997; Van Straten et al., 2009).

Quadro 2.3 - Variação do peso de acordo com a ordem de lactação

<table>
<thead>
<tr>
<th>Ordem de Lactação</th>
<th>Peso (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>536</td>
</tr>
<tr>
<td>2</td>
<td>579</td>
</tr>
<tr>
<td>3</td>
<td>598</td>
</tr>
<tr>
<td>4</td>
<td>618</td>
</tr>
<tr>
<td>≥ 5</td>
<td>636</td>
</tr>
</tbody>
</table>

Fonte: Adaptado de Enevoldsen et al., (1997)

Para Ulutas et al., (2001), o peso corporal dos animais assume-se como um indicador importante, porque associado às práticas de gestão permite selecionar os animais para reprodução ou refugo e é um importante indicador da condição do animal. Pastell et al., (2006), refere que os SOV oferecem a possibilidade de medir o peso corporal do animal de uma forma repetida, permitindo identificar possíveis problemas que possam provocar perdas econômicas avultadas devido à redução da produção e à perda de condição corporal dos animais. O estudo de Sieber (1988), refere que vários autores investigaram a importância do tamanho e peso corporal, e os resultados são diversos, mas a maioria defende que as vacas de maior dimensão obtêm maiores produções leiteiras.

Para Teixeira (1991), os animais de maior tamanho possuem maior quantidade de tecido glandular no úbere, além de aparelhos digestivos mais amplos, sendo a energia necessária para a manutenção de uma vaca leiteira proporcional ao seu tamanho metabólico, ou superfície corporal.

2.5.2 Alimentação no SOV

Nas últimas décadas a intensa seleção genética, as melhorias consideráveis na nutrição e maneio, aumentaram significativamente a capacidade leiteira das vacas Holstein-frísia
Esta pressão seletiva e mérito genético para a produção de leite, resultou em alterações fisiológicas que facilitam a mobilização de energia de tecidos importantes (Mcnamara e Hillers, 1986). A alimentação animal surge como uma das práticas mais importantes na exploração leiteira já que a vaca está dependente deste fator como forma de atingir o seu potencial genético através dos nutrientes que lhe são fornecidos (Greenough, 2007). Neste sentido, atualmente o maior desafio na alimentação de vacas leiteiras altamente produtivas prende-se em conciliar dietas com elevada densidade energética, necessária para suportar as altas produções e as necessidades de manutenção do animal (Zebeli et al., 2012).

A formulação de dietas equilibradas para vacas leiteiras não é um processo simples e requer a combinação de conhecimento científico, económico e de gestão, bem como, criatividade e boas técnicas de maneio para balancear as necessidades nutricionais do animal (Ishler, 1996). Assim um dos estímulos mais importantes na nutrição de vacas leiteiras de alta produção tem sido encontrar o equilíbrio nutricional para promover a saúde do rúmen e maximizar o consumo de energia para fluxo de nutrientes para a glândula mamária e consequente síntese de leite (VandeHaar et al., 2012).

Num SOV as vacas, geralmente, são alimentadas com concentrado durante a ordenha. O facto de se ordenhar enquanto as vacas ingerem concentrado reduz o tempo de ordenha e aumenta o fluxo de leite (Samuelsson et al., 1993). Além disso, o concentrado apenas dado no SOV aumenta a motivação da vaca para visitar a unidade de ordenha (Prescrott et al., 1998). O uso de alimento concentrado altamente palatável é um forte motivador de ordenha (Morita et al., 1996), criando uma associação positiva para as vacas procurarem o sistema de ordenha (Madsen et al, 2010). A administração do alimento concentrado no SOV apresenta múltiplos benefícios, incluindo a oportunidade para o produtor suplementar as vacas individualmente de acordo com a fase de lactação de cada animal (Jacobs e Siegford, 2012). Os sensores automáticos presentes no SOV permitem obter informação detalhada sobre a quantidade de alimento ingerida, o que nos sistemas convencionais de ordenha não era possível registar (Spahr e Maltz, 1997). Segundo Bossen e Weisberg (2009) e como as vacas respondem a estratégias individuais de alimentação, o ajuste da dieta individualmente melhora a produção de leite.

Halachmi et al. (2004) referem que o ajuste da quantidade de concentrado a administrar por animal deverá ser sustentada nas seguintes variáveis: produção diária de leite, tendo em
conta a produção média dos dias anteriores; peso (kg) atual, e a média dos catorze dias anteriores; teor de gordura, proteína e lactose (medido mensalmente e ainda a condição corporal apresentada pelos animais, que deverá ser mensurada mensalmente.

Num estudo elaborado por Klaas et al. (2003) foi possível demonstrar que, as vacas de elevada produção, recebem uma elevada quantidade de alimento concentrado durante a ordenha o que desencadeia maior frequência de visitas ao SOV.

2.5.3 Frequência de ordenha

Na maioria dos sistemas modernos de produção leiteira, e em especial em efetivos de alta produção, as vacas são ordenhadas duas vezes por dia, com intervalo entre ordenhas o mais semelhante possível. No entanto, existem razões de produtividade e de bem-estar para que as vacas sejam ordenhadas mais frequentemente (Bar-Peled et al., 1995), particularmente com o avanço dos sistemas de ordenha automatizada em explorações pecuárias (Hovinen e Pyorala, 2011).

A frequência de visitas voluntárias das vacas ao SOV é determinante para a eficiência de produção (Borderas et al., 2008; Lyons et al., 2013). Assim um dos fatores chave para otimizar a implementação e a rentabilidade de um SOV, consiste em adequar o número de ordenhas às caraterísticas e fase produtiva de cada animal existente na exploração.

Neste sentido Ayadi et al. (2006), referem que na fase inicial da lactação deve ser estabelecida uma maior frequência de ordenha, para que o animal manifeste a sua capacidade produtiva. Para Koning e Ouweltjes (2000) e Wendel et al. (2000) o número de ordenhas diárias cifra-se entre 2 a 3,4 por dia.

Quadro 2.4 - Número de ordenhas diárias segundo vários autores

<table>
<thead>
<tr>
<th>Nº de ordenhas por dia</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,9</td>
<td>Van’t Lnad et al. (2000)</td>
</tr>
<tr>
<td>2,6</td>
<td>Hogeveen et al., (2001)</td>
</tr>
<tr>
<td>2,4</td>
<td>Forsberg et al. (2002)</td>
</tr>
<tr>
<td>2,3</td>
<td>Harms et al. (2002)</td>
</tr>
<tr>
<td>2</td>
<td>Thune et al. (2002)</td>
</tr>
<tr>
<td>2,1</td>
<td>Mačuhová et al. (2003)</td>
</tr>
<tr>
<td>2,4</td>
<td>Harms (2005)</td>
</tr>
<tr>
<td>2,3- 2,8</td>
<td>Ayadi et al. (2006)</td>
</tr>
<tr>
<td>2,2</td>
<td>Bach et. al. 2009</td>
</tr>
</tbody>
</table>
Ayadi et al. (2006) refere ainda que durante metade do período de lactação a frequência de ordenha encontra-se entre 2 a 3 ordenhas diárias, dependendo da capacidade do SOV, enquanto no final da lactação é inferior a 2 ordenhas. Segundo Nixon et al. (2009), as vacas em fase final da lactação tendem a visitar o SOV com menor frequência devido à diminuição da pressão no úbere.

Quando os produtores de leite optam por investir neste tipo de equipamento, é esperado que ocorra um aumento na frequência de ordenha, e que este tenha um efeito positivo sobre a produção (Wagner-Storch e Palmer, 2003), sem adição significativa de trabalho e, consequentemente maior rendimento em produção de leite (Garcia e Fulkerson, 2005; Stockdale, 2006).

A utilização do SOV permite controlar a frequência de ordenha durante as diferentes fases da lactação. Para Hale et al. (2003) o aumento da frequência de ordenha durante o início da lactação influencia a dinâmica celular na glândula mamária, determinando maior produção durante a lactação.

A implementação dos SOV permite que as vacas possam ser ordenhadas um maior número de vezes por dia, o que permite aumentar a produção de leite entre 3 a 11% em relação ao sistema de ordenha comum, em que as vacas são ordenhadas duas vezes por dia (Koning et al., 2002; Baines, 2002). Para Stelwagen (2001), o aumento do número de ordenhas de 2 para 3 ou mais vezes por dia, permite aumentar a produção de leite até 18%.

Wirtz et al. (2004) constataram que a produção de leite por animal poderá aumentar até 20% se as vacas forem ordenhadas três vezes ao dia no SOV. Knight e Dewhurst (1994) mencionam que um maior número de ordenhas diárias permite aumentar a produção de leite entre 6 a 25%. No entanto, de acordo com Koning e Rodenburg, (2004), Bach et al. (2009), e Bijl et al. (2007) os valores de acréscimo da produção de leite com a instalação do SOV poderão ser da ordem de 5 a 10% por vaca.

Tendo em consideração o referido por Erdman e Varner (1995) e mais recentemente por McNamara et al., (2008) a realização de três ordenhas diárias traduz-se num aumento de 3,5 Kg de leite/vaca/dia, em relação à execução de apenas duas ordenhas diárias. No entanto, o aumento na frequência de ordenha pode nem sempre resultar num potencial aumento da produção de leite, especialmente em vacas primíparas (Speroni et al., 2006). Por outro lado, Bach e Busto (2005), realçam que as vacas com ordenhas muito irregulares poderão manifestar uma diminuição da produção de leite, especialmente em multíparas.
3. TRABALHO EXPERIMENTAL

3.1 Material

A componente prática do presente trabalho resultou de um estudo realizado em três explorações leiteiras na região de Entre Douro e Minho durante o período de maio de 2014 a abril de 2015. Teve como finalidade a recolha de dados referentes a animais sujeitos ao sistema de ordenha voluntaria (SOV), que incidiram essencialmente sobre os principais parâmetros produtivos. Realizaram-se várias visitas às explorações para recolha de informação relativa aos SOV, através da plataforma do sistema informático de ordenha nas explorações em estudo.

Quadro 3.1- Distribuição das explorações alvo de estudo e suas principais características

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concelho</td>
<td>Vila do conde</td>
<td>Vila do conde</td>
<td>Barcelos</td>
</tr>
<tr>
<td>Nº de SOV</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Animais em produção</td>
<td>92</td>
<td>55</td>
<td>180</td>
</tr>
<tr>
<td>Tipo de Piso</td>
<td>Betão com rodo</td>
<td>Betão ripado</td>
<td>Betão com rodo</td>
</tr>
<tr>
<td>Sistema de estabulação/circulação</td>
<td>Trafego livre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº lotes</td>
<td>Lote único</td>
<td>Lote único</td>
<td>3 Lotes</td>
</tr>
<tr>
<td>Nº médio de lactações (2014)</td>
<td>2,5</td>
<td>2,0</td>
<td>2,3</td>
</tr>
<tr>
<td>Produção média aos 305 dias (2014)</td>
<td>10767</td>
<td>11817</td>
<td>10988</td>
</tr>
</tbody>
</table>

3.2 Metodologia

Para este trabalho foram recolhidos um total de 100431 registos de ordenhas provenientes de 3 explorações leiteiras, pertencentes a cerca de 330 vacas em lactação, para um período experimental de aproximadamente um ano, onde existe uma predominância de animais da raça Holstein Frísia.

A recolha de dados centrou-se nos principais parâmetros registados pelo SOV, nomeadamente:

- Animal - número de SNIRA e número de casa;
- Peso - peso vivo da vaca (kg) em cada visita ao SOV;
- Ordenhas - número de ordenhas realizadas por cada vaca em 24 horas;
- Lactação - número de lactação correspondente a cada vaca;
- Dias em lactação - número de dias de lactação de cada vaca;
- Produção - produção diária de leite (kg) por vaca;
- Total de concentrado - quantidade de concentrado (kg) fornecido pelo SOV a cada vaca em 24 horas;
- Ingestão de concentrado - quantidade de concentrado (kg) ingerido por cada vaca em 24 horas;
- Concentrado por cada 100 kg de leite - quantidade de concentrado (kg) ingerido por vaca por cada 100 kg de leite produzido (valor estimado pelo SOV);
- Recusas - número de vezes que a vaca acede ao SOV e não é admitida para ordenha.

Quanto ao número de lactação os animais foram divididos em 3 classes: 1ª classe: animais de 1ª lactação; 2ª classe: animais de 2ª e 3ª lactação e por fim 3ª classe: animais com 4 ou mais lactações.

As fases de lactação foram discriminadas de acordo com o referenciado no contraste leiteiro: 1ª fase: ≤ 60 dias; 2ª fase: [60 – 120]; 3ª fase: [120 – 180] e 4ª fase: > 180 dias.

3.3 Tratamento estatístico

Os dados recolhidos foram posteriormente exportados individualmente para uma folha de cálculo do programa informático Microsoft Office Excel, sendo executada a validação da base de dados para subsequente tratamento estatístico.

A análise estatística foi efetuada recorrendo aos programas Excel 2010 (Microsoft) e SPSS para Windows versão 22 (SPSS.Inc.). Fez-se o cálculo da estatística descritiva, tanto de tendência central (média), como de dispersão (desvio padrão da média e coeficiente de variação) dos dados obtidos através do SOV.

Para além da determinação de valores médios, analisou-se a influência da exploração, do número de lactações e da fase da lactação na produção diária de leite, nos dias em leite, na ingestão de concentrado, no peso e no número de lactações, tendo-se utilizado um modelo de ANOVA e o teste de comparação de médias Tuckey. Recorrendo ao mesmo programa, procedeu-se à determinação dos coeficientes de correlação de Pearson entre todas as variáveis analisadas.
Procedeu-se a uma análise de componentes principais, tendo por base 6 variáveis, tendo-se recorrido ao referido programa estatístico, para determinar o número de variáveis independentes que concentram a maior parte da variabilidade dos parâmetros analisados.

Analisou-se a relação entre os dias em lactação e a produção diária de leite através de regressão linear.
4. RESULTADOS

Em função dos dados recolhidos através do SOV, procedeu-se à análise dos vários parâmetros, incluindo o peso, as recusas e quantidade de leite produzido, e posteriormente discriminam-se alguns dados descritivos dos principais parâmetros analisados e por fim efetuou-se a relação entre alguns fatores.

4.1 Análise de variância

4.1.1 Influência da exploração

As explorações revelaram diferentes critérios para usufruir dos benefícios que a utilização do SOV possibilita, que estão associados a causas multifatoriais, muito específicas e adequadas a cada unidade produtiva.

Figura 4.1 - Efeito da exploração na produção de leite e número de ordenhas diárias

Observaram-se diferenças significativas (P<0,05) entre explorações para a produção média diária de leite (Figura 4.1). A exploração 1 apresentou uma produção média diária superior (40,8 Kg/dia) relativamente às outras duas explorações. Esta evidência poderá estar associada a fatores genéticos, nutricionais, a condições das instalações, ao maneio animal, número de animais por SOV ou à existência de um maior número de animais no pico produtivo.
Conстатou-se um efeito da exploração no número de ordenhas diárias (Figura 4.1), com diferenças significativas (P<0,05), entre todas as explorações. A exploração 1 apresentou o número mais elevado de ordenhas/dia (3,7) e a exploração 2 o valor mais baixo (3,0 ordenhas/dia). Podendo também observar-se uma associação entre maior número de ordenhas e superior produção de leite por vaca/dia.

Quadro 4.1 - Efeito da exploração nos dias em leite (DEL)

<table>
<thead>
<tr>
<th>Exploração</th>
<th>N</th>
<th>Média±DP</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24336</td>
<td>155,7±103,7</td>
<td>0</td>
<td>507</td>
<td>66,6</td>
</tr>
<tr>
<td>2</td>
<td>13192</td>
<td>176,7±117,4</td>
<td>0</td>
<td>654</td>
<td>66,5</td>
</tr>
<tr>
<td>3</td>
<td>62903</td>
<td>187±119,9</td>
<td>0</td>
<td>643</td>
<td>64,0</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P <0,05</td>
</tr>
<tr>
<td>Total</td>
<td>100431</td>
<td>178,4±116,7</td>
<td>0</td>
<td>654</td>
<td>65,4</td>
</tr>
</tbody>
</table>

Nas componentes analisadas valores de letra distinta (a≠b≠c) são significativamente diferentes

A exploração revelou efeito (P <0,05) no DEL, com diferenças entre todas as explorações (Quadro 4.1), tendo a exploração 1 evidenciado o DEL mais baixo (155,7) e a exploração 3 o valor de dias em leite mais elevado (187).

Quadro 4.2 Efeito da exploração na ingestão de concentrado no SOV

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Exploração</th>
<th>N</th>
<th>Média±DP</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingestão de concentrado</td>
<td>1</td>
<td>24336</td>
<td>5,5±1,9</td>
<td>0</td>
<td>12</td>
<td>34,5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13192</td>
<td>5,3±2,2</td>
<td>0</td>
<td>12</td>
<td>41,5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>62903</td>
<td>4,9±2,1</td>
<td>0</td>
<td>12</td>
<td>42,9</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P <0,05</td>
</tr>
<tr>
<td>Total</td>
<td>100431</td>
<td>5,1±2,1</td>
<td>0</td>
<td>12</td>
<td>41,2</td>
<td></td>
</tr>
<tr>
<td>Concentrado por cada 100 Kg de leite</td>
<td>1</td>
<td>24336</td>
<td>13,6±4,6</td>
<td>2</td>
<td>140</td>
<td>33,8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13192</td>
<td>13,2±4,3</td>
<td>2</td>
<td>92</td>
<td>32,6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>62903</td>
<td>14,1±4,9</td>
<td>3</td>
<td>117</td>
<td>34,8</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P <0,05</td>
</tr>
<tr>
<td>Total</td>
<td>100431</td>
<td>13,9±4,8</td>
<td>2</td>
<td>140</td>
<td>34,5</td>
<td></td>
</tr>
</tbody>
</table>

Nas componentes analisadas valores de letra distinta (a≠b≠c) são significativamente diferentes

Também foi possível verificar um efeito da exploração na ingestão de concentrado e na quantidade ingerida por cada 100 Kg de leite (Quadro 4.2), com diferenças (P <0,05) entre todas as explorações.

Constatou-se que na exploração 1 a ingestão de concentrado é superior (5,5 Kg) relativamente à exploração 3 que apresenta o valor mais baixo (4,9 Kg). A quantidade de
A concentração ingerida por cada 100 Kg leite produzido foi superior na exploração 3 (14,1 kg), sendo a exploração com menor eficiência produtiva, tendo em conta o preço mais elevado deste componente na alimentação de vacas leiteiras comparativamente aos restantes, que são normalmente a silagem de milho e a palha.

4.1.2 Influência do número lactações

A produtividade das vacas leiteiras pode ser considerada como uma medida de saúde da vaca, bem como determinante no rendimento das explorações leiteiras. Com o aumento do número de lactações existe um incremento da produção de leite até à 3ª a 4ª lactação, verificando-se posteriormente um decréscimo na produção.

Quadro 4.3 - Efeito do número de lactações na produção diária de leite (kg/dia)

<table>
<thead>
<tr>
<th>Número lactação</th>
<th>N</th>
<th>Média±DP</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32825</td>
<td>33,5±7,8</td>
<td>2</td>
<td>63</td>
<td>23,4</td>
</tr>
<tr>
<td>2 e 3</td>
<td>54558</td>
<td>37,7±10,7</td>
<td>3</td>
<td>74</td>
<td>28,6</td>
</tr>
<tr>
<td>≥4</td>
<td>13048</td>
<td>41,1±10,2</td>
<td>2</td>
<td>72</td>
<td>24,9</td>
</tr>
</tbody>
</table>

Sig. P <0,05

Total 100431 36,8±10,1 2 74 27,6

Nas componentes analisadas valores de letra distinta (a≠b≠c) são significativamente diferentes

Observaram-se diferenças significativas (P<0,05) entre lactações na produção diária de leite (Quadro 4.3). Os animais mais jovens (33,5 kg) apresentaram resultados produtivos inferiores comparativamente aos animais com maior número de lactações (41,1 kg).

Quadro 4.4 - Efeito do número lactações no peso vivo das vacas

<table>
<thead>
<tr>
<th>Número lactação</th>
<th>N</th>
<th>Média±DP</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32825</td>
<td>563,4±72,3</td>
<td>344</td>
<td>865</td>
<td>12,8</td>
</tr>
<tr>
<td>2 e 3</td>
<td>54558</td>
<td>638,0±70,3</td>
<td>398</td>
<td>892</td>
<td>11,1</td>
</tr>
<tr>
<td>≥4</td>
<td>13048</td>
<td>666,4±58,3</td>
<td>500</td>
<td>844</td>
<td>8,8</td>
</tr>
</tbody>
</table>

Sig. P <0,05

Total 100431 617,3±79,9 344 892 13,0

Nas componentes analisadas valores de letra distinta (a≠b≠c) são significativamente diferentes

Constatou-se um efeito (P<0,05) do número de lactação no peso vivo das vacas (Quadro 4.4) entre todas as lactações. As vacas de primeira lactação revelaram menor peso (563 kg), a contrastar com os animais com quatro ou mais lactações onde se observaram os animais com superior peso vivo (666,4 kg).
Encontrou-se efeito (P<0,05) do número de lactação na ingestão de concentrado. Observou-se que os animais com quatro ou mais lactações ingeriram maior quantidade de concentrado (5,5 kg), sendo que os animais mais jovens revelaram menor ingestão de concentrado (5,0 kg) (Quadro 4.5).

Para a quantidade de concentrado por 100 Kg de leite observaram-se diferenças (P<0,05) entre a primeira lactação e as restantes. Foi possível constatar que à medida que o número de lactações aumenta a quantidade de concentrado para perfazer 100 Kg de leite é menor. As vacas mais jovens (1ª lactação) ingeriram cerca de 14,8 Kg de concentrado enquanto as vacas com quatro ou mais lactações 13,3 Kg de concentrado por 100 kg de leite produzido.

Como seria de esperar observou-se efeito (P<0,05) do número lactações nas recusas (Quadro 4.6), ou seja à medida que aumenta a ordem de lactações, verificou-se uma diminuição no número de recusas. A vaca com o passar dos anos tende a adaptar-se melhor ao funcionamento do SOV, reduzindo para menos de metade o número de recusas (2,3 para 1,1).
4.1.3 Influência da fase da lactação

As vacas ao longo da lactação sofrem influência de diversos fatores genéticos, ambientais e fisiológicos capazes de determinar a sua produtividade.

Figura 4.2 - Efeito da fase de lactação na produção diária de leite

Encontraram-se diferenças significativas (P<0,05) da segunda fase de lactação (61 a 120 dias) comparativamente às restantes, tendo evidenciado o valor mais elevado (43,4 kg/dia), enquanto a quarta fase de lactação também se mostrou diferente das restantes, com o valor mais baixo (31,8 kg/dia) (Figura 4.2).
Figura 4.3 - Efeito da fase de lactação no peso vivo das vacas

Observaram-se diferenças significativas (P<0,05) entre todas as fases de lactação para o peso vivo das vacas leiteiras. Encontrou-se uma tendência crescente de ganho de peso ao longo da lactação com um acréscimo médio de peso de 61,4 kg entre a primeira e a última fase de lactação, ou seja à medida que a vaca diminui a produção de leite consegue incrementar massa corporal, que permitirá um melhor desempenho produtivo na lactação subsequente.

Quadro 4.7 - Efeito da fase de lactação na ingestão de concentrado no SOV

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Fase Lactação</th>
<th>N</th>
<th>Média±DP</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingestão de concentrado</td>
<td>≤ 60</td>
<td>19187</td>
<td>6,1±1,9</td>
<td>0</td>
<td>12</td>
<td>31,3</td>
</tr>
<tr>
<td></td>
<td>61 – 120</td>
<td>17161</td>
<td>6,7±1,3</td>
<td>2</td>
<td>12</td>
<td>19,2</td>
</tr>
<tr>
<td></td>
<td>121 – 180</td>
<td>17008</td>
<td>5,9±1,5</td>
<td>1</td>
<td>12</td>
<td>25,7</td>
</tr>
<tr>
<td></td>
<td>≥ 181</td>
<td>47075</td>
<td>3,9±1,9</td>
<td>0</td>
<td>12</td>
<td>49,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td></td>
<td>P <0,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100431</td>
<td>5,1±2,1</td>
<td>0</td>
<td>12</td>
<td>41,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentrado por cada 100 Kg de leite</th>
<th>Fase Lactação</th>
<th>N</th>
<th>Média±DP</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 60</td>
<td>19187</td>
<td>15,8±5,5</td>
<td>3</td>
<td>140</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>61 – 120</td>
<td>17161</td>
<td>15,7±3,7</td>
<td>5</td>
<td>64</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>121 – 180</td>
<td>17008</td>
<td>14,8±3,7</td>
<td>3</td>
<td>60</td>
<td>24,7</td>
<td></td>
</tr>
<tr>
<td>≥ 181</td>
<td>47075</td>
<td>12,0±4,4</td>
<td>2</td>
<td>65</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td></td>
<td>P <0,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100431</td>
<td>13,85±4,8</td>
<td>2</td>
<td>140</td>
<td>34,6</td>
<td></td>
</tr>
</tbody>
</table>

Nas componentes analisadas valores de letra distinta (a≠b≠c≠d) são significativamente diferentes.
Ao longo da lactação encontrou-se efeito (P<0,05) da fase de lactação na ingestão de concentrado, com diferenças entre todas as fases (Quadro 4.7). A fase de lactação com maior ingestão de concentrado foi entre os 61 a 120 dias (6,7 kg) e a de menor valor revelou-se após os 181 dias de lactação (3,9 kg), ou seja na quarta fase de lactação.

Como seria de esperar observou-se também efeito (P<0,05) da fase de lactação no concentrado ingerido por 100 Kg de leite (Quadro 4.3), ou seja à medida que a lactação vai avançando diminui a produção de leite tal como a quantidade de concentrado despendido.

<table>
<thead>
<tr>
<th>Fase Lactação</th>
<th>N</th>
<th>Média±DP</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 60</td>
<td>19187</td>
<td>1,7±3,8</td>
<td>0</td>
<td>87</td>
<td>221,6</td>
</tr>
<tr>
<td>61 – 120</td>
<td>17161</td>
<td>1,5±3,8</td>
<td>0</td>
<td>84</td>
<td>250,6</td>
</tr>
<tr>
<td>121–180</td>
<td>17008</td>
<td>1,6±4,1</td>
<td>0</td>
<td>99</td>
<td>263,4</td>
</tr>
<tr>
<td>≥ 181</td>
<td>47075</td>
<td>1,4±3,6</td>
<td>0</td>
<td>96</td>
<td>252,4</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100431</td>
<td>1,5±3,7</td>
<td>0</td>
<td>99</td>
<td>247,8</td>
</tr>
</tbody>
</table>

Nas componentes analisadas valores de letra distinta (a≠b≠c) são significativamente diferentes

Encontrou-se efeito (P<0,05) da fase de lactação no número de recusas (Quadro 4.8). Tendo-se observado o maior número de recusas no início da lactação (≤ 60 dias - 1,7 recusas) com uma tendência para o seu decréscimo na última fase de lactação (1,4 recusas).
4.1.4 Relação entre a produção diária e os dias em leite

Se considerarmos o período de lactação das vacas estudadas, a produção inicial estimada foi de 44,6 kg de leite por vaca/dia, com um declive de 4,38% ao longo da lactação (Figura 4.4). Apesar do valor de r revelar uma correlação fraca (0,503), é possível observar na figura 4.4 uma tendência para o decréscimo da produção de leite com o decorrer da lactação.

4.2 Componentes principais

Para comparar as magnitudes dos coeficientes de correlação observados com as magnitudes dos coeficientes de correlação parciais, utilizou-se a medida de adequação da amostra de Kaiser-Meyer-Olkin (KMO), que resultou num valor de 0,67.

No quadro 4.9 apresentam-se os resultados das correlações para o conjunto de parâmetros relativos ao peso das vacas, ingestão de concentrado, total de concentrado, produção diária de leite, quantidade de concentrado por cada 100 Kg de leite, dias em lactação e o número de recusas.

Quadro 4.9 - Correlações entre os parâmetros analisados no SOV

<table>
<thead>
<tr>
<th>PESO</th>
<th>INGESTAO</th>
<th>TOTCONC</th>
<th>PRODDIA</th>
<th>C100KgLE</th>
<th>DLACT</th>
</tr>
</thead>
</table>

Figura 4.4 - Distribuição das produções diárias em função dos dias em leite
As correlações foram todas significativas (P<0,01), tendo-se observado a correlação mais elevada entre as variáveis ingestão de concentrado e o total de concentrado fornecido pelo SOV (0,975). Encontraram-se correlações mais baixas, mas igualmente significativas entre a ingestão de concentrado e a produção diária (0,705), entre o total de concentrado fornecido pelo SOV e a produção diária de leite (0,710).

Os parâmetros ingestão de concentrado, total de concentrado fornecido pelo SOV e produção diária de leite demonstraram correlações negativas com os dias em leite (-0,575, -0,601 e -0,503 respectivamente).

No quadro 4.10 apresentam-se os resultados da análise de componentes principais dos diferentes parâmetros do SOV. Os dois componentes principais explicam no seu conjunto 79,7% da variabilidade total.

Quadro 4.10 - Componentes principais dos diferentes parâmetros do SOV

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Componente 1</th>
<th>Componente 2</th>
<th>Inércia acumulada</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESO</td>
<td>-140""</td>
<td>144""</td>
<td>316""</td>
</tr>
<tr>
<td>INGESTAO</td>
<td>975""</td>
<td>705""</td>
<td>702""</td>
</tr>
<tr>
<td>TOTCONC</td>
<td>127""</td>
<td>698""</td>
<td>601""</td>
</tr>
<tr>
<td>PRODDIA</td>
<td>316""</td>
<td>710""</td>
<td>575""</td>
</tr>
<tr>
<td>C100KgLE</td>
<td>-144""</td>
<td>081""</td>
<td>400""</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor próprio</th>
<th>Variância explicada</th>
<th>Variância acumulada</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,508</td>
<td>58,463</td>
<td>58,463</td>
</tr>
<tr>
<td>1,276</td>
<td>21,264</td>
<td>79,726</td>
</tr>
</tbody>
</table>

O primeiro componente principal representa 58,5% da variabilidade. As variáveis que mais contribuem para este fator são a ingestão de concentrado, o total de concentrado fornecido pelo SOV e a produção diária de leite. Enquanto os dias em lactação apresentaram valor negativo (-0,639).
O segundo componente representa 21,3% da variância total, sendo a maior percentagem da variância explicada pelo peso vivo. No sentido inverso observa-se a ingestão de concentrado (-0,239), o total de concentrado fornecido pelo SOV (-0,244) e a quantidade de concentrado consumido por cada 100 Kg de leite produzido (-0,645).

Foi possível constatar também que a ingestão de concentrado e o total de concentrado fornecido pelo SOV apresentam uma forte relação (inércia acumulada elevada) com os componentes analisados.

![Gráfico do componente principal 1 e 2](image)

Figura 4.5 - Projeção das variáveis originais sobre os eixos definidos pelos dois componentes principais

Na projeção das variáveis no plano definido pelos dois primeiros componentes principais (Figura 4.5), salienta-se a existência de um valor negativo (dias em lactação) no primeiro componente principal. O conjunto dos parâmetros relacionados com o concentrado no SOV conseguem distinguir-se sobre o primeiro componente principal afastados da origem. Por outro lado a variável peso vivo aproxima-se do segundo componente principal, explicando uma causa independente de variação.
5. DISCUSSÃO

Observaram-se diferenças significativas (P<0,05) entre explorações na produção diária de leite e no número diário de ordenhas, com associação positiva entre maior número de ordenhas e maior produção de leite. A exploração 1 apresentou o maior número de ordenhas/dia (3,7) e a exploração 2 o menor número de ordenhas/dia (3). Os resultados encontrados nas três explorações são ligeiramente superiores aos valores mencionados por Van’t Lnad *et al.* (2000) que mentionam como valor aceitável para SOV 2,9 ordenhas/dia. Todavia estes resultados revelaram-se bastante semelhantes aos encontrados por Koning e Ouweltjes (2000) e Wendel *et al.* (2000) indicando 2 a 3,4 ordenhas diárias por vaca.

Também se verificaram diferenças significativas (P<0,05) entre explorações para os dias em leite. A exploração 1 demonstrou o valor mais baixo de dias em leite (155,7), que vem de encontro ao referido por Ribas (1997), considerando aceitável este parâmetro situar-se entre 150 a 170 dias. O autor refere ainda como valor crítico, quando seja superior aos 180 dias, como é o caso da exploração 3, onde o número de dias em leite foi de 187 dias. Esta diferença entre explorações poderá denotar a existência de diferentes estratégias reprodutivas, ou por outro lado relacionar-se com questões de ordem patológica.

Como seria de esperar a exploração 1, em que os animais ingeriram maior quantidade de concentrado (5,5 kg) e revelaram maior número de ordenhas/dia por animal, corresponde à exploração com maior produção diária de leite (40,1 kg/vaca/dia). Este resultado corrobora Koning *et al.* (2002), Wagner-Storch (2003) e Wade *et al.* (2004) ao defenderem que um aumento do número de ordenhas tem um efeito positivo na produção de leite.

A produção de leite e o peso vivo são influenciados pela ordem da lactação das vacas. Verificou-se uma maior produção diária de leite (41,1 kg) e maior peso vivo nas vacas com quatro ou mais lactações (666,4 kg) relativamente aos animais com menor número de lactações. Estes resultados corroboram o mencionado por Teixeira (1991), que menciona a existência de uma relação positiva entre o peso corporal da vaca e a sua produção leiteira,
ressalvando ainda que as vacas de maior tamanho corporal possuem úberes com maior capacidade leiteira. Os resultados obtidos são ligeiramente superiores aos referidos por Enevoldsen et al. (1997), para o peso vivo dos animais, o que poderá ficar a dever-se à importação de fêmeas de elevado potencial produtivo associado ao melhoramento genético efetuado nos últimos anos, resultando em animais mais pesados.

A ordem de lactação revelou efeito (P<0,05) no número de recusas, em que os animais de 1ª lactação manifestaram maior número de recusas (2,3), comparativamente aos animais com 4 ou mais lactações, onde o valor obtido cifrou-se em 1,1 recusas. Esta diminuição das recusas estará associada à habituação das vacas ao SOV, sendo menor o número de vezes que se deslocam ao equipamento entre ordenhas programadas com o avançar da idade.

Como seria de esperar, a fase de lactação teve influência (P<0,05) na quantidade de concentrado ingerido pelas vacas. Assim os animais que se encontravam entre os 61 e os 120 dias de lactação ingeriram maior quantidade de concentrado (6,7 Kg) relativamente às restantes fases, devido às suas exigências metabólicas causadas pela elevada produtividade.

Relativamente ao efeito da fase de lactação na produção de leite foi possível observar que a máxima produção (43,4 kg) ocorreu entre os 61 a 120 dias. Estes resultados vêm comprovar que o pico de lactação se alonga, ocorrendo mais tardiamente, comparativamente com Dematawewa et al. (2007), que observaram uma produção no pico de 44,3 Kg aos 51 dias de lactação. Gengler (1996) refere que as curvas de lactação com formato mais achatado, estão associadas a vacas mais persistentes ou animais com pico menos expressivo. Estes resultados são justificados pelo crescente melhoramento genético dos animais, no sentido de prolongar o nível de persistência da lactação.

A correlação observada entre os dias em leite e a produção da vaca leiteira foi baixa (r=0,503), com uma produção inicial esperada de 44,5 kg/vaca/dia. À medida que a lactação avança a produção de leite vai sofrendo um declive de 4,38%. Este declive pode ser afetado pela genética do animal, pela ordem de lactação, pela fase de gestação (Nørgaard et al., 2005) pela frequência de ordenha e pela nutrição animal (Sorensen et al.,
2006). As variações fisiológicas ao longo da lactação ocorrem de forma coordenada, em que a partir da terceira fase de lactação é privilegiado o desenvolvimento do feto e a acumulação de reservas corporais, em detrimento da produção de leite, como forma de preparação para o parto e lactação seguinte.

As correlações obtidas revelaram-se significativas (p<0,01), destacando-se a correlação mais elevada entre a ingestão de concentrado e o total de concentrado disponível (0,975), o que vem demonstrar que os animais ingerem a quantidade de concentrado disponibilizado quase na sua totalidade. Por outro lado a ingestão de concentrado e o total de concentrado disponível, revelaram ambos correlações negativas com os dias em leite, indicando menor ingestão à medida que se aproxima o final da lactação, ou seja na proximidade do período seco, tendo em conta que a produção de leite também diminui.

Os valores obtidos na análise multivariada (Quadro 4.10) indicam-nos que 79,7% da variância total são expressos pelos dois componentes principais. O primeiro componente expressa 58,4% da variância, sendo os dias em lactação o seu único coeficiente negativo, em relação às variáveis mais correlacionáveis com este componente e por ordem decrescente são total de concentrado disponível, ingestão de concentrado, produção diária de leite e o concentrado por cada 100 Kg/cabeça (valores superiores a 0,51).

O segundo componente representa 21,7 % da variância total, e expressa conformação dos animais, pois verifica-se que a maior percentagem desta variância encontra-se associada a características relacionadas com o peso vivo dos animais.
6. CONCLUSÕES

A evolução tecnológica e a implementação de sistemas automáticos de ordenha em vacas leiteiras, permitiu otimizar a necessidade de realização de três ou mais ordenhas ao dia, melhorando o bem-estar dos animais e a sua produtividade.

- Observaram-se diferenças significativas (P<0,05) entre explorações na produção diária de leite, em que a exploração com maior produção diária (40,8 kg/dia), coincidiu com a que realizou maior número de ordenhas/dia (3,7), com a que permitiu maior quantidade de concentrado ingerido por animal/dia (5,5 kg) e a que revelou o menor número de dias em leite (155).

- Observou-se efeito do número de lactação na produção diária de leite e no peso corporal, em que os animais de 4 ou mais lactações revelaram maior produção de leite (41,1 kg/vaca/dia) e maior peso (666,4 kg).

- Observou-se efeito da fase de lactação na produção diária de leite, com os animais a atingirem o pico de produção na segunda fase de lactação (61 a 120 dias), com 43,4 kg de leite/vaca/dia.

- Encontraram-se diferenças significativas (P<0,05) entre todas as fases de lactação para o peso vivo dos animais, com uma tendência crescente de aumento do peso vivo à medida que decorrem as diferentes fases de lactação (1ª fase - 582,2 kg e 4ª fase - 643,6 kg).

- A maior quantidade média de concentrado ingerido por animal (6,7 Kg) observou-se na segunda fase de lactação (60-120 dias).

- Verificou-se efeito da ordem de lactação e da fase de lactação no número de recusas, tendo os animais de primeira lactação (2,3 recusas) e na primeira fase de lactação (1,7 recusas) revelado maior número de visitas ao SOV sem que tenha decorrido o tempo necessário para a realização de nova ordenha.

- Verificou-se a existência de uma relação inversa entre a produção diária e os dias em leite nas vacas leiteiras, sendo possível obter a seguinte equação: y = - 0,0438x - 44,583.

- Observou-se uma correlação positiva interessante (0,7) entre o concentrado ingerido e a produção diária de leite.

- Os dois componentes principais em conjunto expressam 79,7% da variabilidade dos parâmetros do SOV.
7. REFERÊNCIAS BIBLIOGRÁFICAS

European Food Safety Authority, (2006). Basic Information for the development of the animal welfare risk assessment guidelines. Italy

Hutjens, Mike (1999). "Managing the Transition Cow". University of Illinois Extension

