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Abstract

Nowadays there are many Domain Name Service (DNS) firewall solutions to prevent users

to access malicious domains. These can provide real-time protection and block illegitimate

communications. Most of these solutions are based on known malicious domain lists that

are being constantly updated. However, in this way, it is only possible to block malicious

communications for known malicious domains, leaving out many others that are malicious

but have not yet been updated in the blocklists.

This work intends to provide a DNS firewall solution based on Machine Learning (ML)

to improve the detection of malicious DNS requests on the fly. For this purpose, a dataset

with thirty-four features and 90000 records was created based on real DNS logs. The data

will be enriched using Open Source Intelligence (OSINT) sources. The exploratory analysis

and data preparations steps were carried and the final dataset submitted to different

Supervised ML algorithms to accurately and timely classify if a domain request is malicious

or not.

The results show that the ML algorithms were able to classify the benign and malicious

domains with accuracy rates between 89% and 96% and the time to test between 0.01 and

3.37 seconds which provides a valuable register to the scientific community which can be

applied in firewall systems in order to increase the security analysis and performance.

Keywords: Cybersecurity. DNS. Firewall. Machine Learning.



Resumo

Hoje em dia existem muitas soluções de firewall DNS (Sistema de Nomes de Domı́nio)

para prevenir os utilizadores de acederem a domı́nios maliciosos. Estas podem fornecer

proteção em tempo real e bloquear comunicações ileǵıtimas. A maioria destas soluções

são baseadas em listas de domı́nios maliciosos já conhecidos que estão em constante atu-

alizacão. No entanto, desta forma, só é posśıvel bloquear comunicações maliciosas para

domı́nios maliciosos já conhecidos, deixando de fora muitos outros que são maliciosos mas

ainda não foram atualizados nas listas de bloqueio.

Este trabalho pretende fornecer uma solução de firewall DNS baseada em Machine

Learning (ML) para melhorar a detecção de pedidos maliciosos ao DNS em tempo real.

Para isso, um conjunto de dados com trinta e quatro caracteŕısticas e 90000 registos

foi criado com base em logs de DNS reais. Os dados foram enriquecidos usando fontes

abertas (OSINT). As fases de análise exploratória e preparação de dados foram realizadas

e o conjunto de dados final foi submetido a diferentes algoritmos de ML supervisionados

para classificar de forma precisa e oportuna se um domı́nio pedido ao serviço de DNS é

malicioso ou não.

Os resultados mostram que os algoritmos de ML foram capazes de classificar os domı́nios

benignos e maliciosos com taxas de precisão entre 89% e 96% e o tempo de teste entre 0,01

e 3,37 segundos, o que fornece um registo valioso para a comunidade cient́ıfica que pode

ser aplicado em sistemas de firewall para melhorar o desempenho e a análise de segurança.

Palavras-chave: Cibersegurança, DNS, Firewall, Machine Learning.
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Chapter 1

Introduction

1.1 Context

The Domain Name Service (DNS) is a fundamental service to the functioning of the

Internet. The name servers keep the mapping between a logical name and the IP address

of the servers so that all the communications start by contacting the DNS to obtain the

IP address before accessing the desired service.

As the Internet grows, so does the number of DNS domains. According to the report

provided by Verisign [76], the second quarter of 2020 closed with 370.1 million new do-

main name registrations across all Top Level Domain (TLD). An increase of 0.9 percent

when compared to the first quarter of 2020 and a growth of 4.3 percent, year over year.

Unfortunately, this growth has a less positive side. In [58] it is said that 70% of newly

200 000 registered domains every day are malicious or suspicious. According to the same

study, these new domains just stay active for a very brief period, just hours, while others

are quickly spotted behaving as command and control servers or distributing malware,

phishing attacks, or used for typo squatting.

According to Netsurion [5], a provider of cloud-managed Information Technology (IT)

security services, there are six different types of DNS attacks:

• Malware installation: A common approach to get users to install malware is based

on DNS queries hijacking which allows inserting malicious Internet Protocol (IP)

addresses or domains in the DNS response. This type of attack continues to grow

and the 2021 Check Point mid-year security report [4] points to an increase of 93%

Page 1 of 64



Chapter 1. Introduction

of carried ransomware attacks when compared with the first half of 2021 and the

same period of the past year.

• Credential theft: For credential theft, an adversary can create a malicious domain

based on a legitimate domain name and perform phishing attacks. According to the

FBI internet crime report of 2020 [28], phishing victims doubled from 114 702 in

2019 to 241 324 in 2020 and tend to grow in the current year making this attack the

most common type.

• Command & Control communication: The command & control communication oc-

curs after an initial compromise where the DNS traffic is manipulated in order to

establish a communication with a command and control server. The botnet malware

is a common application of this attack. The adversary can remotely control multiple

machines which can lead to credential and data theft or distributed attacks such as

Distributed Denial of Service (DDOS). Only in the second quarter of this year, the

Spamhaus Malware Labs [68] observed more than 1000 botnet command and control

servers with the “.com” being the top used TLD.

• Network footprinting: DNS queries can be made to build a network map of the

victim. There are two types of footprinting: passive and active. On passive, the

data collection has origin only in open available sources. On active, there is a direct

interaction with the target to obtain information. The abusive use of PTR, SOA,

and AXFER queries are a good indicator of compromise for this type of attack.

• Data theft: For the data theft, there is an abuse of DNS traffic to transfer data.

Commonly the adversary makes use of tunneling from others protocols such as FTP

or SSH through DNS queries and responses. Tunneling allows the attacker to execute

remote malicious commands (command and control) and malware installation on the

victims machine.

• Denial of Service (DoS): In this type of attack, the malicious actors flood a remote

server or website making it temporarily unavailable. The use of DNS amplification

techniques allow attackers to turn small queries into larger payloads capable of bring

down the target server.
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Chapter 1. Introduction

The last Global DNS Threat Report [35] found that, globally, 87% of the surveyed

organizations suffered from DNS attacks with an average cost of 779 008e. In the report

there are two major recommendations to protect against these attacks: securing network

endpoints and DNS traffic analysis. According to the suggestions of the report, the DNS

must be the first line of defense both for the protection of an organization and to stop the

spread of attacks.

1.2 Problem Statement and Motivation

Most of the DNS firewall solutions are based on blocklists of malicious domains. When

a request is sent to these systems it is filtered and a query is produced to check the veracity

of the domain. The blocklists are constantly updated, but if a new malicious domain is not

yet in the list the request continues the flow without any filter leaving the user/organization

exposed to potential cyberattacks. Another approach to malicious domains detection is

the DNS passive analysis. Although DNS traffic is in real-time, the passive analysis makes

use of stored DNS registries. This method consists of the analysis and exploration of DNS

logs to find patterns and extract valuable information in order to detect malicious domain

names.

In [77], the author collected and analyzed real-world DNS data to detect malicious

behavior and was able to detect different patterns such as unauthorized name servers and

botnet controllers. Also, based on passive DNS analysis, the study [48] focuses on the

passive analysis of recursive DNS traffic traces collected from multiple large networks.

It was analyzed more than 2500 million DNS queries and the proposed approach was

able to accurately detect malicious flux service networks which can benefit spam filtering

applications.

Considering the number of malicious domains and their short lifetime, the filtering

based on blocklist and passive DNS analysis is not enough to mitigate the problems. To

cope with the challenge of detecting attempts to communicate with malicious domains in

a timely manner, we propose the study and implementation of a DNS firewall solution

based on Machine Learning (ML). There are previous studies that also detect malicious

domains on the fly such as [19], [47] and [59]. However, as described in the next section, we
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Chapter 1. Introduction

will explore a different approach in order to detect malicious domains with high accuracy

rates and in a timely manner.

1.3 Objectives

The main objective of our work is to implement a firewall solution capable of classifying

DNS requests and filtering them regarding the risk of being malicious or not. This objective

presupposes the implementation of a set of steps, all of them important. Namely:

• Due to the nonexistence of a DNS dataset, a list of malicious and non-malicious

domains needs to be selected;

• From the list of domains, other features that can add value to the analysis should be

derived. This process consists on the data enrichment and involves the use of Open

Source Intelligence (OSINT) sources and with extra fields like the entropy verified

in the domain name and WHOIS information;

• The resulting dataset must be analyzed and prepared before it is submitted to ML

algorithms. This step includes an exploratory data analysis to ascertain the existence

of missing data and extreme values. It also involves the processing of data in order

to obtain a dataset that can be analyzed using ML algorithms;

• The ML algorithms should be selected according the type of analysis to be done (e.g.

supervised versus unsupervised learning);

• The features importance should be accessed to maximize the accuracy while reducing

the time to get the results;

• Conduct different experimental analysis should be done to determine which algo-

rithm(s) is most suitable for further use;

• Conclude on the effectiveness of the solution and on its possible use in in-band

or out-band mode to detect and mitigate problems related to communication with

malicious domains.

The creation of a DNS Firewall capable of detecting and blocking malicious communi-

cations in an accurate and timely manner is very important. Since the DNS is the basis for
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Chapter 1. Introduction

establishing communications, detect and interrupting malicious communications at their

source, independently from attack vector, will prevent the escalation of cyber-attacks, thus

protecting organizations from the economic and reputation damages associated with this

kind of attacks.

1.4 Organization

This document is organized as follows. Chapter 2 describes the work carried out by

other researchers. Chapter 3 presents the proposed methodology to implement the DNS

firewall solution. Chapter 4 focus on the DNS dataset creation and analysis. Chapter

5 presents the data analysis through data preparation, ML classification models used on

this work, and the results. Chapter 6 concludes the thesis.
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Chapter 2

State of the art

The DNS is the central element of the internet and a widely know entry point for

cyber-attacks. According to International Data Corporation’s 2020 threat report [34]

almost 80% of cybersecurity issues involve a malicious DNS query.

The DNS is responsible to map domain names to an IP address and make use of a

caching system to store a domain name with a defined Time To Live (TTL). Nowadays

millions of devices are using DNS servers to be able to navigate on the internet. The

DNS servers communication are made in unique and unsigned packets[25] making these a

target to attackers which are able to exfiltrate data from a victim using data encapsulation

techniques over DNS requests. According to [15] there are numerous vulnerabilities related

to the DNS such as man in the middle attacks, packet sniffing, transaction ID guessing,

caching problems, cache poisoning, and DDOS attacks. Some threats such as phishing

attacks and malware installation might depend on a DNS request [13] either to establish a

communication between a victim and the command and control server or to simply create

a malicious domain to promote malware dissemination and data theft. Therefore, there is

a need to improve the DNS security to ensure secure DNS communications.

Motivated by the many vulnerabilities and a historical record of attacks on DNS sys-

tems, two major security improvements were made: the use of DNS Security Extensions

(DNSSEC) and the DNS firewall solutions.
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Chapter 2. State of the art

2.1 DNSSEC

The DNSSEC is defined by several Request For Comments (RFC) such as the RFC

4033 [54] where is established a standard to add data origin authentication and data

integrity to the DNS using cryptographic digital signatures based on public-key cryptog-

raphy. Although the DNSSEC is present for a long time and 90% of the TLD has the

DNSSEC implemented and enabled [33], according to [12] “only 1% of the .com, .org, and

.net domains attempt to deploy DNSSEC”.

According to [7], the DNSSEC provides protection against spoofing of DNS data and

also man in the middle attacks by adding a layer of authentication to the traditional DNS.

There is some complexity in the implementation of a DNSSEC solution as mentioned in

[14]. This complexity can lead to a bad configuration which can result in vulnerabilities

in the DNSSEC server. In [75] the authors gathered 282766 domain names and 4% of the

domains with DNSSEC implemented showed a form of misconfiguration. Furthermore,

for the misconfigured domain names 73.86% were unable to be reached by a DNSSEC

resolver. In a more recent study about vulnerable domain names over DNSSEC [12]

the authors were able to find multiple domain names with issues on the key generation

mechanism such as the use of shared keys to sign more than one domain and the use of

short (weak) Rivest-Shamir-Adleman (RSA) keys. From a dataset of 1.9M registries, the

authors conclude that 35% are using RSA keys shared with other domains and 66% uses

too short keys (1024 bit or less).

According to [15] there are some different vulnerabilities to the DNSSEC such as the

chain of trust (root public key injection), security considerations for key management, key

rollovers, zone private key storage, and DNSSEC timing issues.

There are recent studies to improve DNSSEC security [22] [39] which aims to add

features such as queries confidentiality using encryption between DNSSEC servers.

Since there is not a silver bullet for the DNS security, all proposals must be taken

into account and the implementation of DNSSEC solutions brings more advantages than

disadvantages.
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2.2 DNS firewall solutions

The DNS based attacks such as the use of botnets are one of the biggest security

threats allowing the combined power of multiple remotely controlled machines to per-

form an attack increasing significantly the success and damage probability. To avoid the

takedown of botnets by the law enforcement authorities, malicious actors make use of

Domain generation algorithm (DGA). This technique allows the generation of random

domain names that change over time. According to [49] there are four methods in which

the DGA are based: arithmetic, hash, wordlist and permutation. These methods take a

seed as an input, outputs a string, and appends a TLD. Due to the randomness of these

domains it is difficult to determine if a given domain name is malicious or not. Reverse

Engineering (RE) is used to verify how these domains are created and then sinkhole the

communications, although RE is time consuming leaving the domains operational for large

periods. In this scenario the application of ML to improve the classification of malicious

and non-malicious domains is essential.

In [53], a ML framework is proposed to identify DGA domain names based on deep

neural networks. The results are encouraging reaching 98.70% on average for the F1 score

and a precision of 83%. With a ML model trained to detect malicious domains, created

using DGA methods or not, it is a valuable complement to actual firewall systems.

In [59] the authors present a prototype of a DNS firewall with flexible response control.

The prototype analyses the DNS queries done by the DNS clients to the university DNS

server and manipulates the responses of queries from attackers based on the analysis. A

more recent study presented in [42] combines blocklists / allowlists with a ML approach on

DNS traffic. A deep neural architecture model was trained using passive DNS database.

This study was able to detect if a domain is benign, malign, or a sinkhole with 95% of

accuracy on malicious and a false positive rate of 1:1000. The study also uses different

algorithms and presents a comparison table for each one.

In [30] authors used nine features of botnet domain querying and the Random Forest

classifier algorithm to pick the malicious domains out of DNS traffic and were able to reach

the 99.38% of accuracy after four optimizations.

In [19] the authors proposed the EXPOSURE, a system that employs passive DNS
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analysis techniques to detect malicious domains. They build a classifier model based on

Decision Tree algorithm (J48), working on real-time over 15 features and reaching 98% of

accuracy on a 10 fold cross-validation. Another DNS based approach was proposed in [47]

and combines the domain features, host-based features, and web-based features to identify

malicious domains. Using a small set of domains (10000), the authors could reach 60% of

accuracy, which can be certainly improved when applied to larger datasets.

The use of DNS Response Policy Zone (RPZ) to block malicious domains is still a useful

approach as demonstrated in [81]. Using ML algorithms, such as the logistic regression

classification algorithm, to actively identify possible threats at DNS level as presented in

[47] combined with a DNS RPZ approach can be valuable and improve the detection of

malicious domains.

Although there are numerous studies on DNS firewall systems, the need to analyze

and predict newly malicious domains over DNS communications in a timely manner is a

valuable cybersecurity countermeasure to mitigate, prevent and alert both organizations

and end-users against malicious DNS traffic.

The solution proposed and the methodology adopted in this study is presented in the

next chapter.
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Chapter 3

Proposal and Methodology

A DNSfirewall system as we propose can be used to complement the DNS firewall

systems based on block/allow lists with a ML model capable of verifying if a domain is

malicious or not. In this way, it is possible to block access to domains that are already

recognized as malicious and to others that are not yet cataloged as such, but which have

a high probability of being so.

The proposed firewall solution will be built in two distinct operation modes: in-band

and out-band. The in-band mode makes use of active DNS analysis and the out-band

mode follows the passive DNS analysis approach as described below:

• In-band: As illustrated in Fig. 3.1, in the in-band way the DNS resolution requests

are analyzed in real time. This allows to determines whether the requested domain

is malicious or not and blocks or alerts as soon as possible to the fact. The overhead

introduced by the DNS firewall is important and will be addressed in the project

considering different DNS request workloads.
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Chapter 3. Proposal and Methodology

Figure 3.1: DNS Firewall operating in In-band

• Out-band: As illustrated in Fig. 3.2, in the out-band mode the DNS firewall will

just analyze periodically the DNS log. This way it will only be able to provide a

posterior analysis. Thus, it is useful to identify devices within the network that are

involved in malicious communications. This operation mode does not overload the

normal processing of DNS requests.

Figure 3.2: DNS Firewall operating Out-band

The analysis of the two modes of operation is very important as it allows to evaluate

the effectiveness of the solution and to measure its online behavior.

The system will analyze each DNS query to gather information about the domain
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name and use that information as input for posterior processing. In this step, parameters

such as the WHOIS information, IP address, and subdomains will be collected. After

the parameters collection, the data will be sent to a ML classification algorithm already

trained. The classification response will be used to determine if the domain is malicious

or not (considering the algorithm accuracy). This process is presented in Fig. 3.3.

Figure 3.3: DNS query flowchart

The entire process of the DNS dataset creation to be used to train ML algorithms and

choosing the best ML algorithm from a historical set of DNS requests will be presented in

the following chapters.
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Chapter 4

DNS Dataset

In this chapter the DNS dataset creation process is presented. The data collection for

non-malicious domains was based on DNS logs and uses four types of records (A, AAAA,

CNAME and MX). The domains were collected from Rapid7 Labs [51] that provides

datasets of DNS requests from their Project Sonar. This data is open and provides a

structured schema that allows a simpler extraction process. A total of 45000 domains

were randomly selected from these lists.

The malicious domains were collected from the SANS Internet Storm Center (SANS)

[55] public list. Are well-known suspicious domain list validated using common virus

detectors publicly available. A total of 45000 domains were randomly selected from the

list.

In a real scenario, the data will be obtained from the DNS server and not from struc-

tured public available files. To mimics the real scenario we replicated the DNS queries for

each domain name collected (Fig. 4.1). To do so, we have configured a local DNS Bind

server [20] allowing us to collect the DNS queries and responses. These responses were

outputted to a file that was parsed giving rise to a Comma-separated Values (CSV) file

containing the domains names. The CSV with the domains was then used to extract the

dataset features.

Figure 4.1: DNS requests and extraction process.
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A total of 90000 domain names constitute the entry point to the information gather-

ing process using OSINT sources, geographic information, and analytic description. The

information gathering was achieved using a Python application capable of extract domain

names from log records, fill the information for each domain and save the dataset in CSV

format. This file uses a comma as a delimiter and a header to label each column. The last

column named ”Class” is the dependent variable classifying each domain as malicious or

non-malicious based on the collected data sources. Providing a classification for each row,

this dataset is a valuable data source for supervised ML applications.

4.1 Creating the dataset

To create the dataset we defined thirty-four different features per DNS domain name.

The features are presented in Table 4.1, containing the description, the data type and the

default value. The decimal values are rounded to the first decimal place. The X denotes

the type of data and N/A refers to the non-applicable field. The DNSRecordType feature

was left in the dataset for filtering purposes, allowing the analyst to select data according

to the DNS record type (A, AAAA, CNAME and MX). The enumerated data types are

described in Table 4.2.
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Table 4.1: Dataset features with description, data types and default value

Feature Description
Data Type

Default Value
Text Boolean Integer Decimal Enumerate

Domain Baseline DNS used to enrich data, e.g. derive features X N/A

DNSRecordType DNS record type queried X N/A

MXDnsResponse The response from a DNS request for the record type MX X False

TXTDnsResponse The response from a DNS request for the record type TXT X False

HasSPFInfo If the DNS response has Sender Policy Framework attribute X False

HasDkimInfo If the DNS response has Domain Keys Identified Email attribute X False

HasDmarcInfo If the DNS response has Domain-Based Message Authentication X False

IP The IP for the domain X null

DomainInAlexaDB If the domain is registered in the Alexa DB X False

CommonPorts
If the domain is available on common ports (80, 443, 21, 22, 23, 25,

53, 110, 143, 161, 445, 465, 587, 993, 995, 3306, 3389, 7547, 8080, 8888)
X False

CountryCode The country code associated with the IP of the domain X null

RegisteredCountryCode The country code defined in the domain registration process (WHOIS) X null

CreationDate The creation date of the domain (WHOIS) X 0

LastUpdateDate The last update date of the domain (WHOIS) X 0

ASN The Autonomous System Number for the domain X -1

HttpResponseCode The HTTP/HTTPS response status code for the domain X 0

RegisteredOrg The organization name associated with the domain (WHOIS) X null

SubdomainNumber The number of subdomains for the domain X 0

Entropy The Shannon Entropy of the domain name X 0

EntropyOfSubDomains The mean value of the entropy for the subdomains X 0

StrangeCharacters
The number of characters different from [a-zA-Z] and considering

the existence maximum of two numeric integer values
X 0

TLD The Top Level Domain for the domain X null

IpReputation The result of the blocklisted search for the IP X False

DomainReputation The result of the blocklisted search for the domain X False

ConsoantRatio The ratio of consonant characters in the domain X 0

NumericRatio The ratio of numeric characters in the domain (numericchars/len(domain)) X 0

SpecialCharRatio The ratio of special characters in the domain X 0

VowelRatio The ratio of vowel characters in the domain X 0

ConsoantSequence The maximum number of consecutive consonants in the domain X 0

VowelSequence The maximum number of consecutive vowels in the domain X 0

NumericSequence The maximum number of consecutive numbers in the domain X 0

SpecialCharSequence The maximum number of consecutive special characters in the domain X 0

DomainLength The length of the domain X N/A

Class The class of the domain (malicious = 0 and non-malicious = 1) X N/A

For the feature selection, it was taken into account the study of related works resulting

in around 30% of the selected features. The features Autonomous System Number (ASN),

IP address, all the sequence and ratio (numeric, vowel, consonant and special characters)

and geographic information were based on DNS features from related articles such as [47],

[83] and [61]. The remaining features are based on meetings with the thesis supervisors

where unique features of the domains (malicious and non-malicious) were discussed and a

more detailed description of each feature is presented in the next paragraphs.

The MXDnsResponse feature was considered interesting because a registered non-

malicious domain for professional purposes, normally, contains a registry to point to the

Simple Mail Transfer Protocol (SMTP) provider. In this context, the nonexistence of the
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Mail Exchanger (MX) registry on the DNS for the associated domain raises an alert flag

for a not structured organization which can be considered suspicious behavior and valuable

input to the exploratory analysis step. For the TXTDnsResponse feature was applied the

same logic.

The HasSPFInfo feature is based on the Sender Policy Framework (SPF) attribute,

the HasDkimInfo is related to Domain Keys Identified Email (DKIM) attribute and Has-

DmarcInfo corresponds to the Domain-Based Message Authentication Message Confor-

mance (DMARC) attribute. These parameters can be extracted from the response of a

TXT query made to a DNS server. According to Google [50], the SPF “lets you specify

the servers and domains that are allowed to send an email for your organization. When

receiving mail servers get a message from your organization, they compare the sending

server to your list of allowed servers. This lets receiving servers verify the message actu-

ally came from you. The DKIM adds an encrypted digital signature to every message sent

from your organization. Receiving mail servers use a public key to read the signature, and

verify the message actually came from you. DKIM also prevents message content from

being changed when the message is sent between servers. The DMARC tells receiving

servers what to do with messages from your organization when they don’t pass either

SPF or DKIM. DMARC also sends reports that tell you which messages pass or fail SPF

and DKIM. These reports help you identify possible email attacks and other vulnerabili-

ties”. If a domain does not contain SPF, DKIM and DMARC registries can be considered

vulnerable to spam, phishing or spoofing.

The IP address is a unique identifier for a device on the internet or a local network.

It is a set of four octets (e.g, 192.152.78.150) and each octet ranges between 0 and 255.

For the dataset it was taken into account the public IP address for the associated domain.

To retrieve the IP address from a domain it was used a native Python library (socket).

A detailed explanation of how the IP address was retrieved from a domain name can be

found further in this chapter.

The DomainInAlexaDB feature is based on the Alexa Top 1 million sites [11]. The data

source for the Alexa top sites is the Alexa Traffic Rank [10] which provides the popularity

trend, calculated using the page views and daily visitors over a three month period. For

this dataset, if a domain has a positive match in the Alexa top sites list it is set to true
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otherwise is set to false.

To choose common ports for the CommonPorts feature, a search for well-known net-

work ports was performed. The ports numbers are used to distinguish between distinct

services that are integrated with transport protocols such as the Transmission Control

Protocol (TCP) and User Datagram Protocol (UDP).

The Internet Assigned Numbers Authority (IANA) [37] provides “the global coordi-

nation of the DNS Root, IP addressing, and other Internet protocol resources”. On their

Service Name and Transport Protocol Port Number Registry [60] there are all the reserved

and non reserved in use port numbers. According to the Red Hat Security Guide [24] and

using the IANA registries as a data source, is possible to check numerous well-known ports.

The network ports used in this feature and their common use are described below:

• 80 / 443 - Used for the Hypertext Transfer Protocol (HTTP) and Hypertext Transfer

Protocol Secure (HTTPS) protocols respectively;

• 21 - Commonly used for File Transfer Protocol (FTP) port;

• 22 - Used on the Secure Shell (SSH) service;

• 23 - The Telnet service;

• 25 - Used on the SMTP;

• 53 - Normally used for the DNS service;

• 110 - Used on Post Office Protocol version 3 (POP3);

• 143 - Used on Internet Message Access Protocol (IMAP);

• 161 - Used on Simple Network Management Protocol (SNMP);

• 445 - Used on Server Message Block (SMB) over TCP/IP;

• 465 - Used on Simple Mail Transfer Protocol over Secure Sockets Layer (SMTPS);

• 587 - Used on Mail Message Submission Agent (MSA);

• 993 - Used on Internet Message Access Protocol over Secure Sockets Layer (IMAPS);
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• 995 - Used on Post Office Protocol version 3 over Secure Sockets Layer (POP3S);

• 3306 - Commonly used for the MySQL database service;

• 3389 - Commonly used for Windows Remote Desktop connections;

• 7547 - Used on CPE WAN Management Protocol (CWMP);

• 8080 - Commonly used for world wide web caching;

• 8888 - Normally used as an alternative to HTTP port.

The CountryCode, as the name suggests, is the country code (e.g. US, NL, PT) for a

given IP address. To collect the geographic information from the IP address was used the

geoip2 [45] framework. This feature allows the dataset to have a geographic distribution

based on the country code.

The RegisteredCountryCode may differ from the CountryCode. It is based on the

WHOIS information which provides valuable information from a domain name. Similar

to CountryCode, this feature allows the dataset to have another geographic distribution

and also to correlate differences between these geographic features.

The CreationDate and LastUpdateDate are also values gathered from the WHOIS

database. Both features use enumeration to simplify all possible date ranges and are

described in Table 4.2. A malicious domain name typically has a recently created or

updated date registry. On the other side, a non-malicious domain tends to have an older

creation date registry and less frequent updates. This information and the correlation

between malicious and non-malicious are further described in the exploratory analysis

chapter.

According to Cloudflare [79], the ASNs “are the big networks that make up the Inter-

net. More specifically, an autonomous system (AS) is a large network or group of networks

that have a unified routing policy. Every computer or device that connects to the Internet

is connected to an AS.”. The collection of the ASN for each domain can be used to in-

vestigate the concentration of malicious and non-malicious domains over an autonomous

system. For instance, if the malicious domain names are related to a specific ASN, this

feature will have a higher importance on the feature selection phase.

Page 18 of 64



Chapter 4. DNS Dataset

The HttpResponseCode makes use of enumeration to fit in the range of all possible

HTTP response codes. The enumeration used is described in Table 4.2. Depending on

the DNS record type, the HTTP/HTTPS response to a domain may indicate suspicious

behavior. For example, a domain where a DNS server request was made with a record

type of ”A” will likely have an associated HTTP/HTTPS service.

The RegisteredOrg corresponds to the associated organization for a given domain name

from the WHOIS database. The top most common registered organizations can be related

to malicious or non-malicious domains which can provide valuable insights and it will be

explored further in the exploratory analysis.

For the SubdomainNumber feature, a third-party framework named Sublist3r [70] was

used. According to the documentation, the “Sublist3r is a python tool designed to enumer-

ate subdomains of websites using OSINT. Sublist3r enumerates subdomains using many

search engines such as Google, Yahoo, Bing, Baidu and Ask. Sublist3r also enumerates

subdomains using Netcraft, Virustotal, ThreatCrowd, DNSdumpster and ReverseDNS”.

For some search engines, there is a limit of requests per day, hour, and in some cases per

minute. To avoid these limits, only the following search engines were used: PassiveDNS

and Bing. Usually, a professional organization has multiple subdomains used in a distinct

variety of services such as email (e.g. email.domain) and Virtual Private Network (VPN)

services (e.g. vpn.domain). The correlation between the subdomain number for malicious

and non-malicious domains is described further in the exploratory analysis.

The Entropy feature allows computing the randomness of a domain name. It was

used the Shannon Entropy method [74] which allows a metric for the randomness of

characters in a domain name. For instance, simulating a well-known domain and a DGA

domain it was calculated the entropy for the following domain names: “google.pt” and

“asdhbajhdsbj.com”. The domain “google.pt” has an entropy value of 2.73 and the domain

“asdhbajhdsbj.com” has an entropy value of 3.25 as expected. The entropy values for a

domain can be a valuable input to a future ML application. Domains based on the DGA

are typically random, and so the entropy constitutes an interesting feature. Similarly to

the Entropy feature, the EntropyOfSubDomains represents the mean value of the entropy

of the subdomains.

Generally, the malicious domains and principally the ones generated by DGA con-
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tain much more unusual characters. For the StrangeCharacters feature was calculated

the number of characters different from [a-zA-Z] and considering a maximum of two nu-

meric integer values. For example, the domain “my123domain.com” contains two strange

characters. Firstly, we removed the [a-zA-Z] characters leaving the domain as “123.”.

Secondly, we remove two numeric characters and the result is “3.”.

The TLD feature provides the TLD from a domain name. According to Cloudflare

[78], “In the DNS hierarchy, a top-level domain (TLD) represents the first stop after the

root zone. In simpler terms, a TLD is everything that follows the final dot of a domain

name. TLDs play an important role in the DNS lookup process. For all uncached requests,

when a user enters a domain name like ‘google.com’ into their browser, the DNS resolvers

start the search by communicating with the TLD server. In this case, the TLD is ‘.com’,

so the resolver will contact the TLD DNS server, which will then provide the resolver with

the IP address of Google’s origin server”. There are also five distinct types of TLD:

• Generic: The most common TLD used such as “.com” and “.net”;

• Country code: Based on the geographic information such as “.uk” and “.pt”;

• Sponsored: TLD with an associated sponsor to represent a community (e.g. “.edu”

used by educational institutions recognized by the US Department of Education);

• Infrastructural: So far this category only contains a registry “.arpa”, the first TLD

created. This is used by the US Defense Advanced Research Projects Agency;

• Reserved: The common example for a reserved TLD is the “.localhost” always re-

served for the local machine.

To extract the TLD from a domain name it was used the TLD python package [17].

The IPReputation and DomainReputation features are based on the match response

to a given IP address or domain provided by the pydnsbl framework [38]. According to

the documentation, this framework allow to check if a IP address or domain is listed in

anti-spam DNS blacklists provided by the Spamhaus project [72].

The ratio and sequence-based features focus on the analytical domain characteristics.

The ratio values are calculated by the mean of all targeted characters on the domain
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length. For example, the ConsoantRatio represents the mean value of consonants charac-

ters in the domain (e.g.: “mydomain.com” as a consonants ratio of 0.58). The sequence

values are calculated by the bigger sequence of the targeted characters. For instance, the

VowelSequence for the domain “mydomain.com” is two (ai).

Further in this chapter, there is a critical analysis of all the features based on ex-

ploratory analysis.

The enumerations data types identified in Table 4.1 are presented in Table 4.2. The

enumerations have been created to prepare the data to be better supported by the ML

algorithms. The values adopted resulted from the analysis of studies, like [40], [18] and

[82] that focus on domains names gathering and DNS features to improve the malicious

detection based on ML applications.

Table 4.2: Values description for enumeration features where X denotes all possible values

Feature Values description

CreationDate

LastUpdateDate

Without data = 0

Until one month = 1

Until six months = 2

Until one year = 3

After one year = 4

HttpResponseCode

Without data = 0

1XX response = 1

2XX response = 2

3XX response = 3

4XX response = 4

5XX response = 5

In order to get all the features, we created several programs using Python, developed

modules for better organization and reuse and used available frameworks. For instance,

to get the IP address for each domain it was created a function to deal with it. The

Code Snippet 4.1 is part of the information gathering (data enrichment) process and it

makes use of the socket native python library to retrieve the IP from a domain name.

Some domains are not configured with redirect rules to take care of a request without the
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”www” subdomain prefix. If the DNS query fails on the first try, we concatenated with

”www” to maximize the results.

Code Snippet 4.1: Function to get the IP for a given domain

import l o gg ing

import socke t

def get Ip ( domain ) :

try :

s ocke t . s e td e f au l t t imeou t ( 0 . 0 5 )

return socke t . gethostbyname ( domain )

except :

try :

s ocke t . s e td e f au l t t imeou t ( 0 . 0 5 )

return socke t . gethostbyname ( ”www. ” + domain )

except Exception as e :

l ogg ing . e r r o r ( ”Exception in get Ip : ” + str ( e ) )

pass

pass

return ’ n u l l ’

The full Python code used to create the dataset is available in [44]. The structure of

the code is based on the main Python file that calls functions in different modules and

makes use of utilities and data stored in different folders. The structure is the following:

• main create datasets.py - The main file to create the dataset and order all the steps

starting in the data collection to information gathering;

• data/ - Inside the folder there are two sub folders (input and output). The logs

collected must be inside the input folder categorized by the DNS record type and by

the class. The output sub folder is the path where the final dataset will be saved;

• lib/ - Contains the functions and modules to support the information gathering

process;
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• utils/ - Contains utility functions in Python Scripts, such as the constants to be used

in run-time. It contains a database sub folder with the AlexaDB [11] and GeoIp [45]

databases inside. The data tools sub folder contains the functions to the collection

of the domains from the logs files and for the information gathering.

The third-party libraries/data used to collect information from a domain are:

• AlexaDB [11] - Alexa top 1 million sites. Used to evaluate if a domain is or not in

the list which allowed us to fill the ”DomainInAlexaDB” feature;

• geoip2 [45] - GeoIP Database. This framework allows us to gather the geographic

information (e.g. country code) for a given IP address;

• pydnsbl [38] - Anti-spam blacklists domain or IP checker. For a given domain (Do-

mainReputation) or IP address (IpReputation) this framework returns a positive

result if a match is found in the blacklists providing the reputation feedback;

• sublist3r [70] - Python package to enumerate subdomains of a given domain using

OSINT (SubdomainNumber). The engines used were PassiveDNS and Bing;

• tld [17] - Python package to extract the TLD for a given domain;

• IPWhois [31] - Python package to retrieve information from WHOIS. Probably one

of the most used frameworks on OSINT tools that return valuable information for a

given domain such as the creation date, last update date, the registered organization

and the registered country.

The result of the information gathering process is stored in a CSV file. A small excerpt

of the result is illustrated in Fig. 4.2. The values of the IP and domain columns, which are

considered personal data under the General Data Protection Regulation (GDPR) rules,

were anonymized using the Label Encoder from SkLearn framework [57] with a value

between 0 and n classes− 1.

Figure 4.2: Dataset result snippet.
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The full dataset is publicly available at Mendeley Data Repository [44]. It can be used

by other researchers to conduct experiences.

4.2 Exploratory analysis

In this section is presented an exploratory analysis for each feature in the dataset and

their correlation to the class (malicious or benign).

The dataset is targeted for Supervised ML Classification. It is a binary classification

predictive modeling since according to the features presented in Table 4.1, the class is

zero (0) for malicious domains and one (1) for non-malicious domains. The dataset is also

balanced and distributed as illustrated in Fig. 4.3. The ML classification should consider

the default dataset characteristics or adapt the dataset for other types of data analysis.

Figure 4.3: Class label distribution graph

The total number of complete entries without “null” values in the dataset is 11547

(12,83%). There are 78453 (87,17%) rows where at least one of the features is “null”. The

“null” values should be considered in the data preparation phase allowing the data analyst

to choose the best approach to handle the “null” values.

The features related to the DNS response are illustrated in the Fig. 4.4. The figure

shows the type of DNS record type requested per class.
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Figure 4.4: DNS response by class

As expected the feature IP has a large number of different values. In Fig. 4.5 is

presented a correlation between “null” IP address values per class label. The figure shows

that there is a high number of malicious domains that do not have an associated IP. This

may indicate that the IP has not yet been assigned to the domain or that the domain has

already been used for cyberattacks and its DNS mapping has been removed. This analysis

is useful for posterior feature selection.

Figure 4.5: IP null values per class

A simple plot between the DomainInAlexaDB and CommonPorts, illustrated in Fig.

4.6, reveals that the distribution of features according to the class is uniform and similar.
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The first plot shows that there are many domains in the dataset that are not included in

the Alexa DB [11], regardless of class. The second shows that for a significant part of the

domains there are no common active ports (no common services are being provided).

Figure 4.6: DomainInAlexaDB and CommonPorts by class

The CountryCode and RegisteredCountry features reveal geographic information about

the domain or the IP associated with the domain. These features are illustrated in Fig.

4.7. With regard to the CountryCode, it appears that most IP are active in the USA and

that they are mostly malicious. This has to do with the data source implying that mali-

cious domains are largely associated with servers hosted in the USA (they may be sinkhole

DNS servers). The RegisteredCountry focuses on the domain information (collected using

the WHOIS database). It shows a greater geographical dispersion and distributed among

the classes under analysis. This analysis does not consider the null values and we used

only the top 20 country codes for presentation purposes.
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Figure 4.7: Geographic information and null count by class

Fig. 4.8 and 4.9 presented a different view for the CountryCode and RegisteredCountry

labels respectively.

Figure 4.8: Country Code geographic distribution in a world map
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Figure 4.9: Registered Country geographic distribution in a world map

The domain registration/creation date and last update date uses an enumeration to

reduce the range of dates. In Fig. 4.10 these features are illustrated grouped by the

class label. This analysis is important to understand if malicious domains are created and

changed more frequently than non-malicious domains (older and more stable, particularly

for well-known domains).

Figure 4.10: Domain creation and last update date per class

The ASN distribution is illustrated in Fig. 4.11. The minus one value means that

there is no ASN information for the domain. From the figures it is also possible to observe

the non found (negative) values regarding the class label. It is important to refer that
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the ASN information is related with the existence of an IP address associated with the

domain, so it is not strange at all that the output of this analysis is very similar to IP

analysis previously presented. Once more it is possible to verify the influence of ASN

26228. This is not due to outliers but it seems to result from the data origin.

Figure 4.11: ASN data distribution per class

The HTTP / HTTPS response code enumeration is described in Table 4.2. In Fig.

4.12 it is possible to see the distribution of the response code by the class label.

Figure 4.12: HTTP / HTTPS response by class

The registered organization feature results from querying the WHOIS service. In Fig.

4.13 are illustrated the top 20 organizations in the dataset. Typically, a non-malicious

organization does not hide this information when registering the domain. On the other
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hand, malicious actors tend not to reveal this information or to tamper with it. In the

figure is presented the relationship between the “null” values (e.g. when the information

is not available) per class.

Figure 4.13: Registered Organization label distribution

The subdomain feature allows checking if a given domain has subdomains registered.

The rationale behind this parameter is to follow. It is normal for a real organization

to have multiple subdomains associated with the domain. On the contrary, a malicious

domain will not normally have many associated subdomains. The figure shows the top 10

most frequent subdomain count and the number of domains that fit in each count. From

the illustration we observed that more than 55 thousand domains do not have subdomains

associated. From the dataset it is also possible to improve the analysis. For example, it

allows to do a cross-table between the number of subdomains and their class.

Figure 4.14: Subdomains label distribution
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Other features presented in the dataset are the domain entropy and the mean entropy

value obtained from the entropy of each subdomain. The result was rounded to integer

values and the distribution by the class label illustrated in the Fig. 4.15.

Figure 4.15: Entropy of domain and mean entropy of subdomains by class

Fig. 4.16 illustrates the strange characters feature per class. The domain name is part

of an organization identity, so it is expected that the name will be chosen in order to be

easily used and memorized. The existence of strange characters contradicts these logic

and can serve as an indicator of the existence of domains for malicious purposes.

Figure 4.16: Strange Characters label distribution by class
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The TLD feature per class is illustrated in Fig.4.17. For presentation purposes only

the top 20 TLD are presented. The null values per class are illustrated in the right-side

of the figure.

Figure 4.17: TLD label distribution and null values per class

The IP and domain reputation feature per class is illustrated in the Fig. 4.18. Both

parameters result from the classification made by third parties and are widely used in the

area of cybersecurity to identify possible IP and malicious domains. Their existence in

the dataset allow to ascertain the weight they will have for the classification process.

Figure 4.18: IP and domain reputation labels distribution per class
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The distribution of the ratio of vowels, consonants, numeric and special characters in

the domain is illustrated in Fig. 4.19. The same representation was made for the sequences

illustrated in Fig. 4.20. The combined analysis between these parameters is interesting,

as it is expected that a non-malicious domain name will be created in order to be easily

memorized and used.

Figure 4.19: Ratios distribution by class

Figure 4.20: Sequence distribution by class

The domain length per class is illustrated in Fig. 4.21. Once more, for presentation

purposes, a frequency chart with the 20 most common domain sizes is presented.
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Figure 4.21: Domain length label distribution

The results of the exploratory analysis lead to considering several features that stood

out. The HasSPFInfo feature that looks for SPF information in a domain is usually

associated with benign domains, which was confirmed in this analysis. The same happened

with the IP feature’s null values, taking into account that malicious domains tend to have a

short lifespan. Consequently, the CountryCode feature had a much higher number of null

values for malicious domains. The creation and last update dates obtained by the WHOIS

database show that malicious domains tend not to have this information associated, unlike

non-malicious domains. Similarly, the RegisteredOrg feature has a higher number of null

values for malicious domains. Ratio and sequence-related features such as ConsoantRatio,

NumericRatio, and VowelSequence show a large discrepancy of values between classes

(malicious and benign), indicating that they will be good features for later selection to

apply ML algorithms.

In the next chapter, an analysis of the data will be presented. The dataset presented

in this chapter will be used as data source for the analysis. Before the analysis it will be

prepared and normalized with methods such as label encoding. Afterward, different ML

algorithms will be applied and the results and discussion will be presented.
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Data analysis

In this chapter we present the data preparation and data analysis phases. The results

achieved by different ML algorithms is also presented.

5.1 Data preparation

In this section, the preparation of data will be presented. According to [21] there are

several tasks for preparing the data such as data cleaning and data transformation.

For the data cleaning step all null values for text type columns were set as “null”

(string data type). For the remaining column types the null values were replaced by the

default value described in the Table 4.1.

In the data transformation step, we ignored the Domain and DNSRecordType columns,

as mentioned earlier, the Domain column was anonymized according to the GDPR rules,

and the DNSRecordType was left in the dataset for filtering purposes only. Therefore,

these features have no value for later use in ML algorithms. For the text and boolean type

columns we use the Label Encoder from SkLearn framework [57] with a value between 0

and n classes − 1 as shown in Code Snippet 5.1. The boolean type was transformed to

integers (0 and 1).

Code Snippet 5.1: Function to encode text and boolean columns

from s k l e a rn . p r ep ro c e s s i ng import LabelEncoder

def l a b e l en cod ing ( df ) :
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l a b e l e n c od e r = LabelEncoder ( )

columns = df . columns . t o l i s t ( )

for c o l in columns :

c o l da t a type = df . dtypes . g e t i t em ( co l )

i f c o l da t a type . char == ”O” or c o l da t a type . name == ”bool ” :

i n t ege r encoded = l ab e l e n c od e r . f i t t r a n s f o rm ( df [ c o l ] )

df [ c o l ] = in t ege r encoded

return df

For all integers (excluding the Class label) it was used the min-max normalization, a

well-known approach used in past scientific experiments like [69] and [56], to export all the

values to a float data type and a range between 0.0 and 1.0 as shown in Code Snippet 5.2.

According to [9] the min-max method performs a linear transformation on the original

data fitting numeric values into a desired scale (in this case to a range between 0.0 and

1.0).

Code Snippet 5.2: Function to normalize integers columns

def get min max ( df ) :

for c o l in df . columns :

i f c o l != ’ Class ’ and df [ c o l ] . dtype . name in [ ” in t64 ” , ” in t32 ” ] :

d f [ c o l ] = ( df [ c o l ] − df [ c o l ] .min ( ) ) / \

( df [ c o l ] .max( ) − df [ c o l ] .min ( ) )

return df

According to Google [46] there are four normalization techniques:

• Scaling to a range: converting numeric values from their natural range (e.g. 0 to

500) to a standard range (e.g. 0.0 to 1.0) and min-max normalization operates in the

same way. It should be used on a feature with more or less homogeneous distribution

over a fixed range;

• Clipping: Basically this technique allows to establish a fixed value for values above

(or below) a certain value. For instance, in a scale from 0 to 100 it can be set a rule
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that ensures the values above 50 will remain 50. It should be used when the feature

contains some extreme outliers;

• Log scaling: Used on a widely range of values to fit into a smaller scale. For example,

in a range between 0 - 100.000 it can be performed this technique to reduce the scale

to 0 - 1000. As cited in [46], “log scaling changes the distribution, helping to improve

linear model performance”. It should be used when the feature conforms to the power

law;

• Z-score: This technique allows to variate a scaling to ensure a feature distribution

that has a mean value of zero and a standard deviation definition of one. It should

be used when the feature distribution does not contain extreme outliers.

Although there are several techniques for data normalization, the one that fits best in

the scope of this dataset is the ”Scaling to a range” using the min-max method since we

have no extreme outliers values.

The resulting CSV file does not include the Domain and DNSRecordType features. All

the columns with text, boolean or integers as the datatype were normalized. An example

result row is illustrated in Fig. 5.1.

Figure 5.1: Normalized CSV file snippet

In this section, we described how the normalization of the data was done through well-

known methods. This phase is very important in a ML context as a weak approach in data

preparation can lead to unwanted results that are not coherent with the dataset content.

In the next section, it will be presented the feature importance methods to extract the

most important features from the dataset (normalized) and also it will be presented the

application of ML classification algorithms over the selected features.

5.2 Machine Learning: Classification

In this section it is presented the method for feature selection / importance and also

the application of supervised ML classification algorithms.
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The ML process was divided in two steps: feature selection / importance and ML

algorithms application.

In the first step, after the normalization of the dataset content as explained in the

previous section, we used three different methods to select the features that have more

impact and importance for the analysis. The feature selection process allows a better

understanding of the data, better understanding of the model, and reduces the number

of input features. There are numerous reasons to apply feature selection / importance

methods such as:

• A faster ML training process;

• Decrease of the complexity of a model making it easier to understand;

• Possibility to improve the accuracy if the right subset is chosen;

• Reduces the overfitting problem (the use of irrelevant features).

Although there are numerous methods of feature selection / importance for different

scopes, the following methods were selected based on the study of the state of art:

• Feature importance: This method uses the Extra Trees Classifier algorithm to fit

and return the importance of the features;

• Univariate selection: Using a mathematical approach based on statistics this method

works by picking up the best features on univariate statistical tests;

• Recursive Feature Elimination (RFE): According to [52], this method fits a model

and deletes the feature (or features) with the lowest importance until the specified

number of features is reached.

As demonstrated in [26], the behavior and performance of a feature selection algorithm

depends strongly on the classification rule, sample size, and feature/label distribution.

The feature importance method makes use of the Extra Trees Classifier algorithm to fit

and returns the importance of the features as shown in Code Snippet 5.3. According to the

SkLearn official documentation for the Extra Trees Classifier [62], the feature importances

method calculates the impurity-based feature importance. Therefore, the most important
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features represent the most higher values. After the model fit using all the features, a vari-

able feat importances saves all the values of the feature importances method. Finally, it

is returned a predefined number (feature number variable) of the most important features.

Code Snippet 5.3: Feature Importance function

import pandas as pd

from s k l e a rn . ensemble import Ex t r aT r e e sC l a s s i f i e r

def f e a tu re impor tance ( ) :

model = Ex t r aT r e e sC l a s s i f i e r ( )

model . f i t (X, y )

f e a t impor tance s = pd . S e r i e s (model . f e a tu r e impor tance s , index=X. columns )

return f e a t impor tance s . n l a r g e s t ( feature number ) . axes [ 0 ] . va lue s

The univariate selection method selects features according to the K highest scores and

with chi-squared stats of non-negative features as input function. The chi-square method

can be used to find the optimal subset of all features and to remove the ones with the

lowest rank and was applied in past similar investigations such as [71] which purpose

an intrusion detection model based on the fusion of this method and the Support-Vector

Machine (SVM) ML algorithm. As shown in the Code Snippet, it was used the SelectKBest

from SkLearn [64], the score func parameter was set to chi2 and the k value represents

the number of features to return (predefined feature number variable). After the model

fit, were created the dfscores and dfcolumns variables to save both scores related to the

feature importance and the columns associated. This information was concatenated which

allows to return the predefined number of features (feature number) based on the higher

score. The underlying code is presented in the Code Snippet 5.4.

Code Snippet 5.4: Univarate Selection function

import pandas as pd

from s k l e a rn . f e a t u r e s e l e c t i o n import SelectKBest

def un i v a r i a t e s e l e c t i o n ( ) :

Page 39 of 64



Chapter 5. Data analysis

b e s t f e a t u r e s = SelectKBest ( s c o r e f un c=chi2 , k=feature number )

f i t = b e s t f e a t u r e s . f i t (X, y )

d f s c o r e s = pd . DataFrame ( f i t . s c o r e s )

dfcolumns = pd . DataFrame (X. columns )

f e a tu r eS c o r e s = pd . concat ( [ dfcolumns , d f s c o r e s ] , ax i s=1)

f e a tu r eS c o r e s . columns = [ ’ Features ’ , ’ Score ’ ]

return f e a t u r eS c o r e s . n l a r g e s t ( feature number , ’ Score ’ ) . Features . va lue s

The RFE (with cross-validation) method consists in the recursive processing of smaller

and smaller sets of features to gather the features with the highest importance. It needs

an estimator (in this case was used the Decision Tree Regressor) that will iterate and

seek for the lowest feature importance and exclude it. The recursive method stops when

the number of features left is equal to the desired number of features selected. Firstly,

it was defined the rfecv variable from the RFECV method which contains the following

parameters:

• Estimator: According to the SkLearn documentation [63], the estimator repre-

sents “a supervised learning estimator with a fit method that provides informa-

tion about feature importance either through a coef attribute or through a fea-

ture importances attribute.” The selected Decision Tree Regressor algorithm fits

the requirements allowing to get the feature importances using the feature importances

method;

• Step: If used an integer number (e.g. 1) this parameter represents the number of

features to remove on each iteration. If the value is in a range between 0.0 and 1.0

then the step will represent the percentage of features to remove at each iteration;

• CV: Represents the cross-validation splitting strategy. In this case it was used the

StratifiedKFold function and according to the official documentation [66] “this cross-

validation object is a variation of KFold that returns stratified folds. The folds are

made by preserving the percentage of samples for each class”. The value 10 is based

on the study of the state of art. If no value is defined, the default behavior for this

parameter is the use of 5-fold cross validation;

Page 40 of 64



Chapter 5. Data analysis

• Verbose: If set to 1, the output will be more verbose;

• min features to select: As the name implies, this parameter allows to set the mini-

mum features to select. For this it was used the predefined variable (feature number);

• n jobs: According to the official documentation [63] this parameter represents the

“number of cores to run in parallel while fitting across folds”. It was used the number

4 because the processor used to run this task (described further in this chapter) only

contains 4 cores.

After the definition of the parameters the model was fit and transformed using the

method transform that allows reducingX to the selected features. Similarly to the previous

method, it was created a data-frame to save each attribute and the associated importance.

It was sorted by the importance in descending order and finally it is returned the top

feature number (predefined number of features desired). The code is presented in the

Code Snippet 5.5.

Code Snippet 5.5: RFE function

import pandas as pd

from s k l e a rn . t r e e import Dec i s ionTreeRegres sor

from s k l e a rn . mode l s e l e c t i on import St ra t i f i edKFo ld

from s k l e a rn . f e a t u r e s e l e c t i o n import RFECV

def r f e c r o s s v a l i d a t i o n ( ) :

r f e c v = RFECV( es t imator=Dec i s ionTreeRegres sor ( ) , s tep=1,

cv=St ra t i f i edKFo ld (10 ) , verbose=1,

m i n f e a t u r e s t o s e l e c t=feature number ,

n j obs=4)

r f e c v . f i t (X, y )

r f e c v . trans form (X)

dset = pd . DataFrame ( )

dset [ ’ a t t r ’ ] = X. columns

dset [ ’ importance ’ ] = r f e c v . e s t imato r . f e a tu r e impo r t anc e s
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dset = dset . s o r t v a l u e s ( by=’ importance ’ , ascending=False )

return dset . a t t r . head ( feature number ) . va lue s

The selection of the best features is a very important process especially when the

number of features is large. It is necessary to remove the features with less importance

to feed the ML algorithm with only the most important features to avoid overfitting, to

decrease the training time, and to have a higher probability of improvement of the final

results.

As presented, the first step is to select the most significant features and the second one

is the application of ML algorithms and analysis of the metrics to determine the accuracy,

precision, recall, F1 score, and the score time (seconds) achieved per algorithm.

The algorithms used to the evaluation were:

• SVM: According to [6], the SVM “accomplishes the classification task by construct-

ing, in a higher dimensional space, the hyperplane that optimally separates the

data into two categories”. The SVM algorithm can solve both linear and non-linear

problems by using a parameter named kernel which allows the researcher to set the

more relevant mathematical function regarding the problem. According to the of-

ficial SkLearn documentation [2], there are four distinct kernel functions: linear,

polynomial, Radial basis function (RBF) and sigmoid. As the input dataset has

a binary classification (0 or 1) and according to the study [36] where an identical

dataset was used and comparisons were made between the four kernel types, the

precision achieved was higher when linear kernel functions were used. Therefore on

this evaluation was also used the linear kernel function;

• Logistic Regression (LR): The LR algorithm is a statistical regression method based

on supervised learning and used for predictive analysis. Makes use of linear relation-

ships between the independent features and the target label. According to [8], this

algorithm has advantages such as simple implementation and excellent performance

over linear datasets. Considering that one of the goals of this research is to have

a solution capable of predicting malicious domains as close to real-time as possible,

performance is a huge impact factor;
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• Linear Discriminant Analysis (LDA): According to [16] the LDA is a commonly used

method to classify data based on dimensionality reduction. The main goal of dimen-

sionality reduction is to delete the redundant features in a dataset while retaining

the majority of the data. Although it is used for predictive analysis in classification

problems, there are vast use cases for this algorithm such as face recognition [43]

and medical researches [29] and [27];

• K-Nearest Neighbors (KNN): As mentioned by DeepAI [41] “the k-nearest neighbors

algorithm, or kNN, is one of the simplest machine learning algorithms. Usually, k

is a small, odd number - sometimes only 1. The larger k is, the more accurate the

classification will be, but the longer it takes to perform the classification”. According

to [32], the optimal value of k-nearest neighbors is different for distinct data samples.

For this research, the number of the k-nearest neighbors parameter was the default

(5) from the SkLearn framework [67];

• Decision Tree (CART): The CART term refers to Decision Tree algorithms that can

be used on predictive problems to do classification and regression. For this research

it was used the Decision Tree Classifier which according to the official SkLearn

documentation [1] the main goal is “to create a model that predicts the value of a

target variable by learning simple decision rules inferred from the data features”.

One of the main advantages of this algorithm is the simplicity of understanding and

interpretation and also the excellent performance demonstrated in previous analyzes

already mentioned in the state of art chapter;

• Naive Bayes (NB): The NB algorithms are used on supervised ML algorithms by

applying Bayes Theorem. According to SkLearn documentation [3] there are three

major models based on NB: Gaussian, Multinomial, and Bernoulli. The Gaussian

is commonly used for classification problems. The Multinomial is more used on

text classification problems and implements the NB algorithm for multinomial data.

The Bernoulli method implements the NB algorithm according to multivariate data

distribution mainly used for text classification. Therefore was selected the Gaussian

NB model in order to classify and predict in a timely manner the input dataset.

These ML algorithms are often used in supervised machine learning classification prob-
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lems, as already mentioned in the state of art, and the code to build each model is described

in the Code Snippet 5.6.

Code Snippet 5.6: Model build

from s k l e a rn import svm

from s k l e a rn . d i s c r im i n an t ana l y s i s import LinearDi sc r iminantAna lys i s

from s k l e a rn . l i n ea r mode l import Log i s t i cReg r e s s i on

from s k l e a rn . na ive bayes import GaussianNB

from s k l e a rn . ne ighbors import KNe ighbor sC la s s i f i e r

from s k l e a rn . t r e e import Dec i s i o nT r e eC l a s s i f i e r

MLALGORITHMS = {”SVM” : { ’ model ’ : svm .SVC( ke rne l=’ l i n e a r ’ , c a c h e s i z e =500)} ,

”LR” : { ’ model ’ : L og i s t i cReg r e s s i on ( max iter =500)} ,

”LDA” : { ’ model ’ : L inearDi sc r iminantAna lys i s ( )} ,

”KNN” : { ’ model ’ : KNe ighbor sC la s s i f i e r ( )} ,

”CART” : { ’ model ’ : D e c i s i o nT r e eC l a s s i f i e r ( )} ,

”NB” : { ’ model ’ : GaussianNB ()}}

After the ML models building, the dataset was split between training and testing

groups using 10-fold cross-validation. For the number of folds (10), the analysis of the

state of the art was taken into account. The number of features (9) was based on repetitive

evaluations, starting with only one feature and increasing the number for each iteration

which allows us to detect the lowest improvement on the results after the ninth feature.

The time metric evaluates the mean of the prediction time, for each iteration of the cross-

validation. The computational performance must be taken into account. The experiments

were performed on a computer with the following characteristics:

• Processor: Intel Core i7-8565U @ 1.80Ghz;

• Memory: SDRAM DDR4-2400 16 GB (16 GB x 1);

• Graphics Processor: Intel UHD Graphics 620;

• Storage: 512 GB PCIe Gen 3x4;
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– Read up to 3,100 MB/s;

– Write up to 2,800 MB/s.

To run each ML algorithm we created a function that receives as input the dataset

containing the best nine features using each one of the three feature selection / importance

methods mentioned earlier in this chapter. To run the cross-validation process with the

features and the class label was used the cross validate function from SkLearn [65] which

allows to “evaluate metric(s) by cross-validation and also record fit/score times”. Finally,

the result was appended to an array to produce the final table with all the results. The

Code Snippet 5.7 illustrates the code used to evaluate each algorithm.

Code Snippet 5.7: Cross Validation function

from s k l e a rn import mode l s e l e c t i on

from s k l e a rn . met r i c s import make scorer , accuracy score , r e c a l l s c o r e , \

f 1 s c o r e

from s k l e a rn . mode l s e l e c t i on import c r o s s v a l i d a t e

l a b e l = datase t [ ’ Class ’ ]

s c o r i ng = { ’ accuracy ’ : make scorer ( a c cu racy s co r e ) ,

’ p r e c i s i o n ’ : ’ p r e c i s i o n ’ ,

’ r e c a l l ’ : make scorer ( r e c a l l s c o r e ) ,

’ f 1 ’ : make scorer ( f 1 s c o r e )}

kf = mode l s e l e c t i on . KFold ( n s p l i t s=k , random state=None )

r e s u l t = c r o s s v a l i d a t e (model , f e a tu r e s , l abe l , cv=kf , s c o r i ng=sco r i ng )

t a b l e d a t a k c r o s s . append ( [ str ( key ) ,

str ( k ) + ”−f o ld−cros s−va l i d a t i o n ” ,

len ( f e a t u r e s . columns ) ,

r e s u l t [ ’ t e s t a c cu r a cy ’ ] . mean ( ) ,

r e s u l t [ ’ t e s t p r e c i s i o n ’ ] . mean ( ) ,

r e s u l t [ ’ t e s t r e c a l l ’ ] . mean ( ) ,

r e s u l t [ ’ t e s t f 1 ’ ] . mean ( ) ,

r e s u l t [ ’ s c o r e t ime ’ ] . mean ( ) ] )
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To evaluate the effectiveness of the ML models we choose common metrics as follows:

• Accuracy: The accuracy is a ratio between the correctly predicted observations

versus the total number of observations;

• Precision: The precision is the ratio between the correctly predicted positive obser-

vations and the total predicted positive observations;

• Recall: The recall is the ratio between the correctly predicted positive observations

and all observations in the actual class (0 or 1);

• F1 score: The F1 score is the average of precision and recall and takes into account

the false positives and false negatives;

• Score time: Corresponds to the time for the test of the estimator on each cross-

validation iteration.

The return of each ML function is an array with the results of each iteration and the

result for the metrics is the average value.

The source code used to evaluate the feature importance and the ML algorithms is

publicly available in [23].

5.3 Results and discussion

The results for each feature importance method are described in the Table 5.1, Table

5.2 and Table 5.3. As mentioned in the previous section, the test mode selected was 10-

fold-cross-validation and the number of features selected was nine. The features vary for

each feature selection / importance methods (feature importance, univariate selection and

RFE).

In Table 5.1 results for the features that have higher importance using the feature

importance method were: ’NumericRatio’, ’ConsoantRatio’, ’NumericSequence’, ’Has-

SPFInfo’, ’TXTDnsResponse’, ’DomainLength’, ’VowelRatio’, ’CreationDate’ and ’StrangeChar-

acters’.
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Table 5.1: Results using the Feature Importance feature selection method

Algorithm Accuracy Precision Recall F1 Score Time (sec)

SVM 0.912456 0.949 0.872111 0.898517 3.08712

LR 0.916622 0.949854 0.8788 0.905137 0.0142102

LDA 0.908822 0.950375 0.8616 0.894534 0.0122217

KNN 0.951833 0.965961 0.936311 0.946446 1.793

CART 0.947911 0.967106 0.926867 0.939979 0.0117228

NB 0.903156 0.947481 0.851622 0.887892 0.012998

Using the feature importance method, the ML algorithm with the highest accuracy

(95%), recall (93%), and F1 score (94%) was the KNN. Although this algorithm has good

results, the time to predict is above 1 second (1,79) losing to the CART algorithm with a

score time of 0.01 seconds. Also, the precision was slightly higher for the CART algorithm.

In Table 5.2 results for the features that have higher importance using the univari-

ate selection method were: ’HasSPFInfo’, ’TXTDnsResponse’, ’CreationDate’, ’Numeri-

cRatio’, ’LastUpdateDate’, ’HttpResponseCode’, ’ConsoantRatio’, ’MXDnsResponse’ and

’StrangeCharacters’.

Table 5.2: Results using the Univariate Selection feature selection method

Algorithm Accuracy Precision Recall F1 Score Time (sec)

SVM 0.919911 0.940908 0.895222 0.909192 3.37574

LR 0.916711 0.949785 0.878156 0.904936 0.0143973

LDA 0.906233 0.957141 0.848222 0.889276 0.0131586

KNN 0.947333 0.966278 0.926156 0.940556 3.23797

CART 0.956011 0.969233 0.941756 0.952492 0.0133054

NB 0.908289 0.955469 0.854178 0.891494 0.013912

Using the univariate selection method, the algorithm with the best results was the

CART. This algorithm shows a validation accuracy of 95% with a precision of 96%. The

recall reached 94% and the F1 score 95%. Although the score time (0.0133) is considered
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an acceptable value the LDA algorithm was slightly faster to predict with a score time of

0.0131 seconds.

In Table 5.3 results for the features that has higher importance using the RFE method

were: ’NumericRatio’, ’ASN’, ’DomainLength’, ’NumericSequence’, ’Ip’, ’ConsoantRatio’,

’TLD’, ’StrangeCharacters’ and ’CountryCode’.

Table 5.3: Results using the RFE feature selection method

Algorithm Accuracy Precision Recall F1 Score Time (sec)

SVM 0.910622 0.937951 0.878444 0.899988 3.2505

LR 0.913867 0.939699 0.883 0.903959 0.013961

LDA 0.907033 0.938683 0.869489 0.895892 0.0142611

KNN 0.957311 0.970312 0.943422 0.95398 1.36982

CART 0.961533 0.976461 0.945867 0.95891 0.0136005

NB 0.8975 0.936195 0.851222 0.884616 0.0127075

The results presented in Table 5.3 are the most interesting ones. They are based-on

the CART algorithm and we were able to reach 96% of accuracy, 97% of precision with a

recall value of 94% and F1 score of 95%. The time score (0.013) was also a good result

losing only to NB algorithm (0.012) but the difference was almost insignificant.

The results obtained so far are encouraging. These results show that the algorithms

are able to distinguish between benign and malicious domains with accuracy rates between

89% and 96%. Considering that the time to detect malicious domains is very important,

the analysis presented also considers the time, in seconds, that each algorithm took to

make the decision and calculate the mean value.

5.4 AutoML - Test and Comparison

The entire process done so far was done manually. From data preparation, selection of

the most important features to the application of ML algorithms, none of these processes

were carried out using Automated Machine Learning (AutoML) processes. According
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to Microsoft [80] the AutoML “is the process of automating the time-consuming, iter-

ative tasks of machine learning model development. It allows data scientists, analysts,

and developers to build ML models with high scale, efficiency, and productivity all while

sustaining model quality”. In order to make a comparison between the results achieved

trough the traditional and manual analysis with an AutoML method we decided to use

the TPOT [73] tool that optimizes machine learning pipelines using genetic programming.

This tool takes care of the following processes: data cleaning, feature-related tasks (selec-

tion, preprocessing, and construction), ML model selection, parameter optimization, and

model validation providing at the end a sample Python code containing the ML pipeline

optimized.

As presented in the Code Snippet 5.8 to use the TPOT Classifier the dataset (raw

data) was divided into independent variables (X) and the class label (y). To be coherent

from our previous experiments, the k-fold value was set to 10. For the remaining TPOT

Classifier parameters we keep the default values.

Code Snippet 5.8: TPOT Classifier

from pandas import np

from s k l e a rn . mode l s e l e c t i on import RepeatedStrat i f i edKFold

from tpot import TPOTClassi f ier

datase t = np . l oadtx t ( Constants . d a t a s e t p a t h f i n a l , d e l im i t e r=’ , ’ , sk iprows=1)

X = datase t [ : , :−1]

y = datase t [ : , −1]

y = y . astype ( int )

cv = RepeatedStrat i f i edKFold ( n s p l i t s =10, n r epea t s =3, random state=1)

model = TPOTClassi f ier ( g ene ra t i on s =5, p opu l a t i o n s i z e =50,

cv=cv , v e rbo s i t y =2,

random state=1, n jobs=4,

max eval t ime mins=2)

model . f i t (X, y )

The TPOT framework return a sample code with the ML pipeline optimized for the
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given dataset as shown in the Code Snippet 5.9. This code receives as input a dataset

in CSV format that is divided into features (independent variables) and the label class

(dependent variable). After that, the ”train test split” function receives the features and

the class label as input to create random train and test subsets. The optimized pipeline

has two estimators to run the process based on the Decision Tree Classifier which was also

used on the previous experiments. The use of estimators allows to combine the results

of the automated feature selection process. Finally, the pipeline fits the training sets to

predict the testing set.

Code Snippet 5.9: AutoML code output

from s k l e a rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

from s k l e a rn . p i p e l i n e import make p ipe l ine

from s k l e a rn . t r e e import Dec i s i o nT r e eC l a s s i f i e r

from tpot . b u i l t i n s import Stack ingEst imator

from tpot . e x p o r t u t i l s import s e t pa ram re cu r s i v e

tpot data = pd . r ead c sv ( Constants . d a t a s e t p a t h f i n a l , sep=’ , ’ ,

dtype=np . f l o a t 6 4 )

f e a t u r e s = tpot data . drop ( ’ Class ’ , a x i s=1)

t r a i n i n g f e a t u r e s , t e s t i n g f e a t u r e s , t r a i n i n g t a r g e t , t e s t i n g t a r g e t = \

t r a i n t e s t s p l i t ( f e a tu r e s , tpot data [ ’ Class ’ ] , random state=1)

expo r t ed p i p e l i n e = make p ipe l ine (

Stack ingEst imator (

e s t imator=De c i s i o nT r e eC l a s s i f i e r ( c r i t e r i o n=” entropy ” ,

max depth=10,

min samp l e s l e a f =12,

m in samp l e s sp l i t =7)) ,

D e c i s i o nT r e eC l a s s i f i e r ( c r i t e r i o n=” g i n i ” ,

max depth=8,

min samp l e s l e a f =16,
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m in samp l e s sp l i t =5)

)

s e t pa ram re cu r s i v e ( e xpo r t ed p i p e l i n e . s teps , ’ random state ’ , 1)

e xpo r t ed p i p e l i n e . f i t ( t r a i n i n g f e a t u r e s , t r a i n i n g t a r g e t )

r e s u l t s = expo r t ed p i p e l i n e . p r ed i c t ( t e s t i n g f e a t u r e s )

The results using both single run and cross validation test modes are presented in the

Table 5.4.

Table 5.4: Results using the AutoML optimized pipeline

Algorithm Test Mode Accuracy Precision Recall F1 Score Time (sec)

Decision Tree (AutoML) Single Run 0.979644 0.979663 0.979639 0.979644 0.037014

Decision Tree (AutoML) 10-fold-cross-validation 0.962967 0.973101 0.952267 0.959949 0.025705

In Table 5.5 are presented the 15 most significant features, achieved based on the mean

importance for the 10 iterations in the AutoML application.

Table 5.5: Top 15 features from AutoML

Feature Importance

NumericSequence 0.7733869657

ConsoantRatio 0.0798138327

DomainLength 0.0530893664

ASN 0.0263959398

Ip 0.0262614325

StrangeCharacters 0.0147163336

TLD 0.0071405632

CountryCode 0.0062722524

SubdomainNumber 0.0021005709

NumericRatio 0.0016877222

VowelRatio 0.0016387243

MXDnsResponse 0.0013082461

SpecialCharSequence 0.0012442882

RegisteredOrg 0.0007781148

Entropy 0.0005820750
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From the results presented in Table 5.5 we can conclude that after the thirteenth feature

(SpecialCharSequence), the importance starts decreasing to low values and are almost

insignificant to the ML model. Therefore, a manual approach to ML model creation must

take into account that the number of resources should not exceed thirteen. The AutoML

algorithm has choose the Decision Tree Classifier as the best algorithm and estimators to

the pipeline.

As shown in Table 5.3, although the feature selection was made using the RFE method,

we also get the highest values using the CART algorithm. The accuracy only differs by

decimal values (AutoML = 0.962 / CART (using RFE) = 0.961). The main difference was

the hyperparameter tuning used by AutoML to reach the highest score. The time resulting

from AutoML (0.025705) was slightly higher than our result (0.0136005). The combination

of accuracy and time are important for a further implementation of the DNS firewall in a

real scenario where, for instance, the highest accuracy algorithm can be devalued in favor

of a better time response algorithm.

In this chapter we presented the data analysis process used to access the usefulness of

ML to develop a DNS firewall solution. First a manual data analysis approach was ap-

plied. It considered the data preparation (normalization), feature selection by importance

using three distinct methods (feature importance, univariate selection, and RFE) and the

application of six different ML models (SVM, LR, LDA, KNN, CART, NB) and the pos-

terior ML classification using different algorithms. Then an automatic approach was used

(AutoML). The results obtained in the first approach were compared to the results from

the AutoML approach using the TPOT framework. From the results we can now choose

the best model to classify new domains towards the development of a DNS firewall solu-

tion. By choosing the best algorithm, and according the results the DNS firewall will be

capable of detecting malicious domains with 96% of accuracy in a time range between 0.01

and 0.02 seconds. In the next chapter, we present the conclusion and the future work.
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Conclusion

The increasing of cyber threats over the last decades and the use of malicious do-

mains to perform numerous of different attacks should aware both organizations as well

as individual users to be more protected over DNS requests.

The main objective of our work is to implement a firewall solution based on ML to

classify DNS requests and filtering them regarding the probability of being malicious or

not. The development of DNS firewall based-on ML encompasses a set of steps such as

the creation of a DNS dataset from DNS logs, the exploratory analysis of the dataset,

the data preparation for the ML process, the feature selection by importance and the ML

algorithms application to determine the classification accuracy. To accomplish these steps

we firstly created a DNS dataset containing thirty-four features enriched using OSINT

and analytical methods. The resulting dataset is publicly available [44] and can be used

by others researchers. After this, the dataset was analyzed to correlate features with

the class label providing valuable insights on how the data is distributed by malicious or

benign domains. In order to be used by ML algorithms the data was processed making

use of well known methods such as label encoding and min-max functions to normalize

all the values. The feature importance process was made using three distinct methods

(feature importance, univariate selection, and RFE) each one with different results. The

ML algorithms were selected taken into account the type of analysis (supervised) and the

state of art. Six different algorithms were used: SVM, LR, LDA, KNN, CART, and NB.

The results were collected and analyzed and we verified that the CART algorithm is the

best algorithm considering the RFE feature selection method.

Page 53 of 64



Chapter 6. Conclusion

Considering the existence of automatic ML processes, the effectiveness of this type of

processes was also analyzed. We used AutoML and a slight improvement in accuracy was

observed but, as drawback an increase in the time to classify a set of domains was also

observed.

Globally, with our approach we got accuracy results above 96% which is a good indi-

cator to go further on the application in a real scenario. The results obtained from the

ML algorithms can also be used by researchers for future research in this field.

Unfortunately, due to time constraints we did not implemented a real usage DNS

firewall solution, but in our opinion all the conditions to build a viable solution are meet,

even for the implementation of a in-band solution to detect malicious domains as they are

requested to the DNS.

Since all the conditions to implement a DNS firewall solution based on ML are met, we

plan our future work with the implementation in a real scenario as follows: (a) creation of

a DNS proxy (which will work also as a firewall), (b) application of our ML model on each

request, (c) log the results to a future passive analysis and (d) alert/allow/block system

to inform the user. The figure 6.1 describes the proposed future work.

Figure 6.1: DNS Proxy/Firewall

This implementation can be a must to have system when applied over a current DNS

firewall without ML approaches in real-time to classify domains. The possibility to improve
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legacy systems is also a valuable point for users and organizations.
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[44] Cláudio Marques. Dataset Creator. 2021. url: https://github.com/claudioti/

dataset-creator.

[45] MaxMind. GeoIP2 Databases. 2020. url: https://www.maxmind.com/en/geoip2-

databases (visited on 09/26/2020).

[46] Normalization. url: https://developers.google.com/machine-learning/data-

prep/transform/normalization (visited on 06/12/2021).

Page 60 of 64

https://www.iana.org/
https://pypi.org/project/pydnsbl/
https://doi.org/10.1109/ICTC.2018.8539727
https://doi.org/10.21227/9ync-vv09
https://dx.doi.org/10.21227/9ync-vv09
https://deepai.org/machine-learning-glossary-and-terms/kNN
https://deepai.org/machine-learning-glossary-and-terms/kNN
https://doi.org/10.1109/BigData.2017.8258361
https://doi.org/10.1109/BigData.2017.8258361
https://doi.org/10.1109/TNN.2002.806647
https://github.com/claudioti/dataset-creator
https://github.com/claudioti/dataset-creator
https://www.maxmind.com/en/geoip2-databases
https://www.maxmind.com/en/geoip2-databases
https://developers.google.com/machine-learning/data-prep/transform/normalization
https://developers.google.com/machine-learning/data-prep/transform/normalization


References

[47] Gopinath Palaniappan et al. “Malicious Domain Detection Using Machine Learn-

ing on Domain Name Features, Host-Based Features and Web-Based Features”. In:

Procedia Computer Science. Vol. 171. Elsevier B.V., Jan. 2020, pp. 654–661. doi:

10.1016/j.procs.2020.04.071.

[48] Roberto Perdisci et al. “Detecting malicious flux service networks through passive

analysis of recursive DNS traces”. In: Proceedings - Annual Computer Security Ap-

plications Conference, ACSAC (2009), pp. 311–320. doi: 10.1109/ACSAC.2009.36.

[49] Daniel Plohmann et al. “A Comprehensive Measurement Study of Domain Gener-

ating Malware”. In: Proceedings of the 25th USENIX Conference on Security Sym-

posium. SEC’16. Austin, TX, USA: USENIX Association, 2016, pp. 263–278. isbn:

9781931971324.

[50] Prevent spam, spoofing & phishing with Gmail authentication - Google Workspace

Admin Help. url: https://support.google.com/a/answer/10583557?hl=en

(visited on 07/29/2021).

[51] Rapid7 Labs. 2020. url: https://opendata.rapid7.com/sonar.fdns%7B%5C_

%7Dv2.

[52] Recursive Feature Elimination — Yellowbrick v1.3.post1 documentation. url: https:

//www.scikit-yb.org/en/latest/api/model%7B%5C_%7Dselection/rfecv.html

(visited on 07/02/2021).

[53] Fangli Ren et al. “A DGA domain names detection modeling method based on

integrating an attention mechanism and deep neural network”. In: Cybersecurity

2020 3:1 3.1 (Feb. 2020), pp. 1–13. issn: 2523-3246. doi: 10.1186/S42400-020-

00046-6. url: https://cybersecurity.springeropen.com/articles/10.1186/

s42400-020-00046-6.

[54] rfc4033. url: https://datatracker.ietf.org/doc/html/rfc4033 (visited on

08/02/2021).

[55] SANS Internet Storm Center. 2020. url: http://web.archive.org/web/20200503151842/

https://www.dshield.org/feeds/suspiciousdomains%7B%5C_%7DLow.txt (vis-

ited on 11/22/2020).

Page 61 of 64

https://doi.org/10.1016/j.procs.2020.04.071
https://doi.org/10.1109/ACSAC.2009.36
https://support.google.com/a/answer/10583557?hl=en
https://opendata.rapid7.com/sonar.fdns%7B%5C_%7Dv2
https://opendata.rapid7.com/sonar.fdns%7B%5C_%7Dv2
https://www.scikit-yb.org/en/latest/api/model%7B%5C_%7Dselection/rfecv.html
https://www.scikit-yb.org/en/latest/api/model%7B%5C_%7Dselection/rfecv.html
https://doi.org/10.1186/S42400-020-00046-6
https://doi.org/10.1186/S42400-020-00046-6
https://cybersecurity.springeropen.com/articles/10.1186/s42400-020-00046-6
https://cybersecurity.springeropen.com/articles/10.1186/s42400-020-00046-6
https://datatracker.ietf.org/doc/html/rfc4033
http://web.archive.org/web/20200503151842/https://www.dshield.org/feeds/suspiciousdomains%7B%5C_%7DLow.txt
http://web.archive.org/web/20200503151842/https://www.dshield.org/feeds/suspiciousdomains%7B%5C_%7DLow.txt


References

[56] V. Sathya Durga and Thangakumar Jeyaprakash. “An Effective Data Normalization

Strategy for Academic Datasets using Log Values”. In: Proceedings of the 4th In-

ternational Conference on Communication and Electronics Systems, ICCES 2019.

Institute of Electrical and Electronics Engineers Inc., July 2019, pp. 610–612. isbn:

9781728112619. doi: 10.1109/ICCES45898.2019.9002089.

[57] Scikit Learn. 2020. url: https://scikit-learn.org/stable/ (visited on 09/15/2020).

[58] scmagazine. Vast majority of newly registered domains are malicious. 2019. url:

https://www.scmagazine.com/home/security-news/malware/vast-majority-

of-newly-registered-domains-are-malicious (visited on 02/09/2020).

[59] Shun Segawa, Hideo Masuda, and Masayuki Mori. “Proposal and Prototype of

DNS Server Firewall with Flexible Response Control Mechanism”. In: Proceed-

ings - 20th IEEE/ACIS International Conference on Software Engineering, Arti-

ficial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2019. In-

stitute of Electrical and Electronics Engineers Inc., July 2019, pp. 466–471. isbn:

9781728116518. doi: 10.1109/SNPD.2019.8935681.

[60] Service Name and Transport Protocol Port Number Registry. url: https://www.

iana.org/assignments/service-names-port-numbers/service-names-port-

numbers.xhtml (visited on 08/22/2021).

[61] A. K. Singh. “Malicious and Benign Webpages Dataset”. In: Data in Brief 32 (Oct.

2020), p. 106304. issn: 2352-3409. doi: 10.1016/J.DIB.2020.106304.

[62] sklearn.ensemble.ExtraTreesClassifier — scikit-learn 0.24.2 documentation. url: https:

//scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.

html (visited on 08/02/2021).

[63] sklearn.feature selection.RFECV — scikit-learn 0.24.2 documentation. url: https:

//scikit-learn.org/stable/modules/generated/sklearn.feature%7B%5C_

%7Dselection.RFECV.html (visited on 08/04/2021).

[64] sklearn.feature selection.SelectKBest — scikit-learn 0.24.2 documentation. url: https:

//scikit-learn.org/stable/modules/generated/sklearn.feature%7B%5C_

%7Dselection.SelectKBest.html (visited on 05/06/2021).

Page 62 of 64

https://doi.org/10.1109/ICCES45898.2019.9002089
https://scikit-learn.org/stable/
https://www.scmagazine.com/home/security-news/malware/vast-majority-of-newly-registered-domains-are-malicious
https://www.scmagazine.com/home/security-news/malware/vast-majority-of-newly-registered-domains-are-malicious
https://doi.org/10.1109/SNPD.2019.8935681
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://doi.org/10.1016/J.DIB.2020.106304
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature%7B%5C_%7Dselection.RFECV.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature%7B%5C_%7Dselection.RFECV.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature%7B%5C_%7Dselection.RFECV.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature%7B%5C_%7Dselection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature%7B%5C_%7Dselection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature%7B%5C_%7Dselection.SelectKBest.html


References

[65] sklearn.model selection.cross validate — scikit-learn 0.24.2 documentation. url: https:

//scikit- learn.org/stable/modules/generated/sklearn.model%7B%5C_

%7Dselection.cross%7B%5C_%7Dvalidate.html (visited on 08/22/2021).

[66] sklearn.model selection.StratifiedKFold — scikit-learn 0.24.2 documentation. url:

https://scikit- learn.org/stable/modules/generated/sklearn.model%

7B%5C_%7Dselection.StratifiedKFold.html (visited on 08/02/2021).

[67] sklearn.neighbors.KNeighborsClassifier — scikit-learn 0.24.2 documentation. url:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

KNeighborsClassifier.html (visited on 05/27/2021).

[68] Spamhaus Botnet Threat Update: Q2-2021. url: https://www.spamhaus.org/

news / article / 813 / spamhaus - botnet - threat - update - q2 - 2021 (visited on

08/01/2021).

[69] M. Srikanth Yadav and R. Kalpana. “Data preprocessing for intrusion detection

system using encoding and normalization approaches”. In: Proceedings of the 11th

International Conference on Advanced Computing, ICoAC 2019. Institute of Elec-

trical and Electronics Engineers Inc., Dec. 2019, pp. 265–269. isbn: 9781728152851.

doi: 10.1109/ICoAC48765.2019.246851.

[70] Sublist3r. 2020. url: https : / / github . com / aboul3la / Sublist3r (visited on

10/01/2020).

[71] Ikram Sumaiya Thaseen and Cherukuri Aswani Kumar. “Intrusion detection model

using fusion of chi-square feature selection and multi class SVM”. In: Journal of King

Saud University - Computer and Information Sciences 29.4 (Oct. 2017), pp. 462–

472. issn: 1319-1578. doi: 10.1016/J.JKSUCI.2015.12.004.

[72] The Spamhaus Project. url: https://www.spamhaus.org/ (visited on 03/22/2021).

[73] TPOT. 2021. url: http://epistasislab.github.io/tpot/ (visited on 07/05/2021).

[74] Sriram Vajapeyam. “Understanding Shannon’s Entropy metric for Information”. In:

CoRR abs/1405.2061 (2014). arXiv: 1405.2061. url: http://arxiv.org/abs/

1405.2061.

Page 63 of 64

https://scikit-learn.org/stable/modules/generated/sklearn.model%7B%5C_%7Dselection.cross%7B%5C_%7Dvalidate.html
https://scikit-learn.org/stable/modules/generated/sklearn.model%7B%5C_%7Dselection.cross%7B%5C_%7Dvalidate.html
https://scikit-learn.org/stable/modules/generated/sklearn.model%7B%5C_%7Dselection.cross%7B%5C_%7Dvalidate.html
https://scikit-learn.org/stable/modules/generated/sklearn.model%7B%5C_%7Dselection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model%7B%5C_%7Dselection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://www.spamhaus.org/news/article/813/spamhaus-botnet-threat-update-q2-2021
https://www.spamhaus.org/news/article/813/spamhaus-botnet-threat-update-q2-2021
https://doi.org/10.1109/ICoAC48765.2019.246851
https://github.com/aboul3la/Sublist3r
https://doi.org/10.1016/J.JKSUCI.2015.12.004
https://www.spamhaus.org/
http://epistasislab.github.io/tpot/
https://arxiv.org/abs/1405.2061
http://arxiv.org/abs/1405.2061
http://arxiv.org/abs/1405.2061


References

[75] Niels L.M. Van Adrichem et al. “DNSSEC misconfigurations: How incorrectly con-

figured security leads to unreachability”. In: Proceedings - 2014 IEEE Joint Intelli-

gence and Security Informatics Conference, JISIC 2014 (Dec. 2014), pp. 9–16. doi:

10.1109/JISIC.2014.12.

[76] Verisign. The Domain Name Industry Brief. Volume 17, Issue 3. 2020.

[77] Florian Weimer. “Passive DNS Replication”. In: 17 th Annual FIRST Conference

(2005). url: www.enyo.de.

[78] What is a top-level domain? — Cloudflare. url: https://www.cloudflare.com/

learning/dns/top-level-domain/ (visited on 08/02/2021).

[79] What is an autonomous system? — What are ASNs? — Cloudflare. url: https:

//www.cloudflare.com/learning/network-layer/what-is-an-autonomous-

system/ (visited on 08/12/2021).

[80] What is automated ML? AutoML - Azure Machine Learning — Microsoft Docs.

url: https://docs.microsoft.com/en-us/azure/machine-learning/concept-

automated-ml (visited on 07/02/2021).

[81] Norman Wilde et al. “A DNS RPZ firewall and current American DNS practice”.

In: Lecture Notes in Electrical Engineering. Vol. 514. Springer Verlag, June 2019,

pp. 259–265. isbn: 9789811310553. doi: 10.1007/978-981-13-1056-0_27. url:

https://link.springer.com/chapter/10.1007/978-981-13-1056-0%7B%5C_

%7D27.

[82] S. Yadav et al. “Detecting Algorithmically Generated Domain-Flux Attacks With

DNS Traffic Analysis”. In: IEEE/ACM Transactions on Networking 20.5 (2012),

pp. 1663–1677. doi: 10.1109/TNET.2012.2184552.
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