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Abstract

The contact tracing mobile Apps are one of the many initiatives to fight the COVID-

19 virus. These Apps use the Exposure Notification (EN) system available on Google

and Apple’s operating systems. However, contact tracing applications depend on the

availability of Bluetooth interfaces to exchange proximity identifiers that, if compromised,

directly impact the effectiveness of the apps.

This thesis discloses the Advertising Overflow attack, a novel internal Denial of Service

(DoS) attack targeting the EN system on Android Operating System (OS) devices. The

attack is performed by a malicious App that occupies all the Bluetooth advertising slots

in an Android device, effectively blocking any advertising attempt of EN.

The impacts of Advertising Overflow and other known DoS attacks, Battery Exhaus-

tion and Storage Drainage, were evaluated using two smartphones as targets and another

six smartphones as attackers. The attacks scenarios were compared against a baseline sce-

nario. The results show that the Battery Exhaustion attack imposes a battery discharge

rate 1.95 times superior to the baseline. Regarding the Storage Drain, the storage usage

increased more than 30 times the baseline results. The results of the novel attack reveal

that a malicious App is able to block the usage of Bluetooth advertising by any other App

by any chosen time period, canceling the operation of the EN system and compromising

the efficiency of any contact tracing App based on EN.

The macro analysis of the EN-related attacks and their categorizations also enabled

the proposal of a novel taxonomy for EN-based attacks. This taxonomy identifies and

categorizes the wide range of existing attacks according to their particularities and char-

acteristics, with a granular multi-level approach, and it includes the most recent attacks.

The proposed taxonomy allows a better understanding of EN’s current attack vectors and

procedures, and highlights areas or vulnerabilities that can be further explored, analyzed,

and fixed.
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Resumo

As aplicações móveis de rastreio de contactos são uma das muitas iniciativas para combater

o v́ırus COVID-19. Estas Apps utilizam o sistema Exposure Notification (EN) dispońıvel

nos sistemas operativos da Google e da Apple. No entanto, as aplicações de rastreio

de contactos dependem das interfaces Bluetooth do dispositivo móvel para transmitir

identificadores que, se comprometidas, impactam diretamente a eficácia destas Apps.

Esta tese apresenta o Advertising Overflow, um novo ataque de Denial of Service (DoS),

que afeta o sistema EN em dispositivos Android. O ataque é executado por uma aplicação

maliciosa que ocupa todos os slots de Bluetooth Advertising num dispositivo Android,

bloqueando qualquer tentativa de transmissão do sistema EN.

Os impactos do Advertising Overflow e de outros ataques DoS já conhecidos, o Battery

Exhaustion e o Storage Drainage, foram avaliados utilizando dois smartphones como alvo

e outros seis smartphones como atacantes. Os cenários de ataque foram comparados com

um cenário base. Os resultados mostram que o ataque de Battery Exhaustion impõe uma

taxa de descarga da bateria 1,95 vezes superior à descarga no cenário base. No ataque

de Storage Drainage, a utilização de armazenamento aumentou mais de 30 vezes que o

cenário base. Os resultados do novo ataque revelam que uma aplicação maliciosa é capaz

de bloquear a utilização de Bluetooth Advertising por qualquer outra aplicação durante

um peŕıodo de tempo escolhido, bloqueando a operação do sistema EN e comprometendo

a eficácia de qualquer aplicação de rastreio de contactos baseada no sistema EN.

A análise macro dos ataques relacionados com o EN e as suas categorizações permitiu

a criação de uma nova taxonomia para ataques baseados no sistema EN. Esta taxonomia

identifica e categoriza a vasta gama de ataques existentes de acordo com as seus particula-

ridades e caracteŕısticas, com uma abordagem granular, e inclui os ataques mais recentes.

A taxonomia proposta permite uma melhor compreensão dos atuais vectores e procedi-

mentos de ataque, e destaca áreas ou vulnerabilidades que podem ser mais exploradas,

analisadas, e corrigidas.
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Chapter 1

Introduction

This chapter presents the context of this work concerning the worldwide COVID-19

pandemic and the technological measures implemented to mitigate the risks. Section 1.1

delineates the expectations for the investigation results and the main focus of the research

and development. Section 1.2 expands on the current needs of the mobile contact tracing

Apps and EN specifically. Section 1.3 details the objectives of this paper and its research.

Section 1.4 presents the three contributions of this paper. Finally, Section 1.5 presents

the organization and chapters of this paper.

1.1 Context

The spread of the pandemic virus COVID-19 motivated the development of technology

to mitigate and fight the virus’ spread [1]. Since it is a global issue, large corporations

such as Google and Apple and governments have presented technological solutions for

automated contact tracing [31].

The authors in [13] mention that using mobile contact tracing Apps which take ad-

vantage of the built-in sensors available in the devices is a valuable tool to control the

COVID-19 virus spread. Using GPS or Bluetooth, mobile Apps can track users’ encoun-

ters and the possibility of an infection. With the data collected, the system warns the users

of the infection risk when another user reports an infection to the health authority [31].

The risk calculation of an infection can also be quantified using algorithms and techniques

as analyzed in [40].
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EN system, also known as Google/Apple Exposure Notification (GAEN), was released

by Google and Apple, with similarities to an already existing protocol named Decentralized

Privacy-Preserving Proximity Tracing (DP-3T), and consists of a decentralized architec-

ture that, according to [37], is privacy-oriented. This architecture ensures interoperability

between Apple and Android devices, allows the execution of the contact tracing tasks at

the OS level, and prevents the OS from terminating or interfering with a task running on

background [31]. The study in [40] highlights that the EN allows to obtain an estimated

risk of infection for each day, while recording no more than 30 minutes of exposure contacts

to preserve the anonymity of an infection source. In comparison, the centralized approach

handles the matching process of the anonymous identifiers in a central server controlled

by the Health Authority [37].

1.2 Motivation

Since the success of a mobile contact tracing App lays in wide adoption amongst users

[1], it is necessary to validate if the security and privacy of the users is assured. Contact

tracing Apps have seen a rise in the Android and Apple stores’ downloads and there have

been multiple systems for automated mobile contact tracing as well. These Apps claim to

be helpful in contact tracing and there have been recent statewide adoptions of specific

applications as the official contact tracing Apps. The Apps also claim to consider privacy

and anonymity concerns, but as shown by [1, 31, 38], authors have identified issues related

to security incidents or insecure frameworks. EN is one of the systems that was widely

adopted in Europe as the official contact tracing system [33].

A study of the existing attacks on the EN system is of the upmost importance to

contextualize users concerns with privacy and security, and also measure the impact of

existing attacks on the EN system’s efficiency.

1.3 Objectives

Given the importance of the analysis and the impact measurement of existing attacks

on the EN system, this thesis has the following objectives:

2



• Verify if there are more attacks on EN that have not been disclosed;

• Measure the impact of existing attacks on contact tracing efficiency and the EN

system;

• Propose a taxonomy to classify the existing attacks and provide an overview of the

current attack vectors and vulnerabilities.

1.4 Contributions

This work presents three contributions: the novel attack Advertising Overflow, an

analysis of the impact of internal DoS-based attacks such as Advertising Overflow, Battery

Exhaustion and Storage Drainage, and a taxonomy proposal for EN attacks.

The contributions are the following:

• Advertising Overflow - Attack that allows a malicious mobile App to exhaust all the

advertisements slots, thus blocking other Apps from placing a Bluetooth advertise-

ment. This contribution lead to the journal publication ”An Advertising Overflow

Attack Against Android Exposure Notification System Impacting COVID-19 Con-

tact Tracing Applications” [14];

• Impact of DoS-based attacks - Analysis of the impact of Battery Exhaustion, Storage

Drainage and Advertising Overflow on Android devices.

• Taxonomy proposal - Novel taxonomy for EN attacks that identifies and categorizes

the wide range of existing attacks according to their particularities and character-

istics, with a granular and multi-level approach, and it includes the most recent

attacks. This contribution lead to a submission of a paper currently in review to the

journal ”IEEE Security and Privacy”;

1.5 Organization

This paper is organized as follows. In Chapter 2, the EN system and its inner workings

are analyzed, what features it has and how it uses them. Chapter 3 explores the related

work with a review on existing attacks for EN and also presents a state-of-art on the

3



categorization of these attacks. Chapter 4 details the novel advertising overflow attack.

Chapter 5 presents the tests done to assess the efficiency of the attacks analyzed and how

they compare to the novel Advertising Overflow attack. Chapter 6 presents the taxonomy

proposal and details the reasoning for each new category and the attacks related to them.

Finally, Chapter 7 draws conclusions and points to future work.
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Chapter 2

Contact Tracing Apps and the

Exposure Notification System

COVID contact tracing Apps have been developed worldwide to assist in the detection

of people infected by COVID-19 and in preventing the increase of transmission chains.

For the Apps based on EN, Google and Apple defined that each country can only

use one digital contact tracing App. Table 2 compiles information from [33] and lists

the currently available Contact Tracing Apps in Europe, the system they use (EN or

other), ordered by the number of installs registered in Google Play Store, and the countries

supporting them. Only 2 of a total of 24 contact tracking apps are not EN-based, the latter

totaling more than 39 million installs by European citizens. Table 2 compiles information

about other known contact tracing Apps used in the rest of the world. The Apps of the

countries presented in this table use EN systems but also alternatives such as the BlueTrace

protocol or other using GPS, QR codes or both Bluetooth and GPS alternatives. Fig. 2.1

presents the comparison of the total of downloads for each of the contact tracing systems.

EN-based contact tracing Apps require a mobile device with a compatible hardware

and Android OS version, including EN and Bluetooth Low-Energy (BLE) support. Fig. 2.2

presents the interactions performed by an EN-based contact tracing App using Android

OS.
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Table 2.1: European contact tracing Apps and their systems.

Contact Tracing App System # of Installs Country

Corona-Warn-App EN +10M Germany

NHS COVID-19 EN +10M United Kingdom

StopCovid Other +10M France

Immuni EN +5M Italy

Radar Covid EN +5M Spain

Coronalert EN +1M Belgium

CoronalMelder EN +1M Netherlands

eRouška EN +1M Czechia

Koronavilkku EN +1M Finland

ProteGO Safe EN +1M Poland

STAYAWAY Covid EN +1M Portugal

SwissCovid EN +1M Switzerland

COVID Tracker EN +500k Ireland

Smittestop EN +500k Denmark

Apturi Covid EN +100k Latvia

HOIA EN +100k Estonia

Korona Stop LT EN +100k Lithuania

#OstaniZdrav EN +100k Slovenia

Smittestopp EN +100k Norway

Stopp Corona EN +100k Austria

Vı́rusRadar Other +100k Hungary

COVIDAlert EN +50k Malta

Stop COVID-19 EN +50k Croatia

CovTracer-EN EN +10k Cyprus

Table 2.2: Non-european contact tracing Apps and their system.

Contact Tracing App System # of Installs Country

COVIDSafe BlueTrace +1M Australia

HaMagen Other (using GPS) +1M Israel

NZ COVID Tracer Other (using QR Codes) +1M New Zealand

TraceTogether BlueTrace +1M Singapore

Tabaud EN +1M Saudi Arabia

BeAware Bahrain Other (using GPS) +100k Bahrain

GH Covid-19 Tracker App Other (using GPS) +5k Ghana

Jersey COVID Alert EN +5k US (Jersey)

According to [23], the core features of Contact Tracing Apps are the following:

• Show notifications and instructions to the user in case of a confirmed exposure to

an infected user.

• Allow users to control when the Bluetooth functions (broadcast and scan) are active.

• Polling the server for new keys, receiving the files with the diagnosis keys and sending
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Figure 2.1: Comparison of total users of each contact tracing system identified in Table 2
and Table 2.

them to EN.

• In case of an infection, retrieving the keys for the last 14 days and upload them to

the server.

The Contact Tracing Apps interact with the EN system and handle communications

with external entities, for example, HyperText Transfer Protocol Secure (HTTPS) requests

to the Health Authority server. The Contact Tracing App also allows the usage of an

infection code to request the last 14 days keys from the EN and uploads them to the

Health Authority. This event is possible when a user is diagnosed as infected. The App

also requests Diagnosis Keys from the Health Authority periodically and passes them to

the EN to check for matches.

The EN derives the Proximity Identifiers from the received keys and compares them

with the ones already stored in the local storage. These stored identifiers were received

via Bluetooth during the exchange process with other devices.

When an identifier marked as infected is matched with one stored in the user’s device,

EN sends that information to the Contact Tracing App that is responsible for informing

and instructing the user.

The EN uses the broadcast procedures such as advertisements that do not need a

connection to exchange identifiers. A device periodically advertises a data block, and
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Figure 2.2: Schematic of how an EN contact tracing App works and its interactions with
the user, other smartphones, and the Health Authority.

surrounding devices can scan and process it. When a device broadcasts an advertising

channel packet, other devices in scanning mode are able to receive it. Since both actions

are not synchronized, there are no guarantees that the advertising packet will be received

[36]. In the BLE standard, the maximum size for a advertising block is 31 bytes. The

option adopted by EN is sending a payload with a 16-bit Service Universally Unique

Identifier (UUID) to mark the payload as belonging to the EN and using 16 bytes for

the Proximity Identifier and another 4 bytes for encrypted metadata sent together with

the Proximity Identifier. If the user disables the contact tracing operation, the Contact

Tracing App sends an event to EN to stop the BLE broadcast and scan operations.

The EN is responsible for the generation, storage and exchange of the proximity iden-

tifiers. Processing matches and key generation is also accomplished in the background.

As detailed in [2, 29], the key generation procedure of EN is depicted in the Fig. 2.3.

The system generates a daily random key named Temporary Exposure Key (TEK) used

to derive a Rolling Proximity Identifier Key (RPIK) each 15 minutes, which is further

used to derive a RPIs identifier. In the Android OS, the EN is incorporated in the Google

8



Play Services and it is responsible for:

• Managing the keys used by the system, including TEKs and RPIs.

• Managing Bluetooth functions, including scans, storage and analysis of exposure

risk.

• Ask for user consent on the first activation of the system and before uploading the

keys in case of an infection.

The health authority provides a code that allows an infected user to report the in-

fection, by uploading the TEKs from the last 14 days to the server. The other users

later download these keys, and EN derives the RPIs and checks for matches in its contact

records.

Bluetooth

Advertising
slots

Temporary
Exposure Key

(TEK)

Rolling
Proximity Identifier Key

(RPIK)

Rolling
Proximity Identifier

(RPI)

Every
24 hours

Every
15 min

Bluetooth

Advertising
slots

Figure 2.3: Schematic of how EN generates and exchanges the RPIs.

EN advertises over BLE the RPIs during several minutes. When a RPI rotates, the

MAC address rotates as well to anonymize the user’s device. According to [2] there is a

tolerance (within 2 hours of its original time interval) for the RPI’s validity, and it should

be advertised using time intervals of 250 milliseconds. In the receiver, the App keeps the

TEKs for 14 days and then deletes them.
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Apart from advertising, EN also scans every 3 to 5 minutes for Bluetooth advertise-

ments with the matching service UUID [2]. Whenever it receives a valid RPI, it stores it

to be used to check for matches.

The advertising and scanning features are present in devices running Android OS from

version 4.3 [21]. These features are commonly seen in most modern smartphones [36].
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Chapter 3

Related Work

This chapter is divided into two sections, a review on existing attacks (3.1) and a

state-of-art on EN attacks categorization (3.2).

3.1 Review on EN Existing Attacks

A review was conducted to collect the related work on existing attacks concerning the

EN system. It was divided into two processes: an analysis of Google’s public documenta-

tion [22] and a systematic review of the existing attacks on EN.

Fig. 3.1 presents the review process and results. The research question was defined

as ”What are the known attacks of EN and other decentralized systems?”. The selected

search engine was Google Scholar and the query presented in Fig. 3.1 was inserted in

this search engine in March 4th, 2021, returning a total of 115 papers. Each paper had

its abstract, content, and conclusions analysed to check for a match on a specific EN

attack. After filtering, a total of 21 papers were relevant for further analysis with a total

of 40 attacks. The public documentation review obtained 1 document that contained 13

attacks. While analyzing the attacks in each paper, it was concluded that some of the

attacks shared many similarities with another previous attack and the differences were

minute details. Therefore, these similar attacks were grouped under the first published

attack (main attack) and declared a sub-attack. The main attack’s name is also used as

the group’s name. After analyzing the attacks, the following results were obtained: 23

Main attacks and 20 Sub-attacks.
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Table 3.1 depicts each attack and their respective sources.

Research Question:
”What are the known attacks on EN and DP-3T?”

Google’s Public Documentation

# of Documents: 1

# of Attacks: 13

Main Attacks and Sub-attacks analysis

# of Main Attacks: 23 # of Sub-attacks: 20

Search Engine: Google Scholar

Query:
(”Exposure Notification” OR ”GAEN” OR

”Google/Apple Exposure Notification” OR ”DP-3T”)
AND ”Attacks”

# of Papers: 115

Filter by:
Abstract,
Content,

Conclusions

# of Papers after Filtering: 20

# of Attacks: 40

Figure 3.1: Stages, options and numbers of the review performed.

Table 3.1: Main Attacks and their sources.

Main Attack [26] [30] [10] [34] [39] [25] [4] [7] [27] [12] [5] [16] [17] [15] [29] [6] [8] [28] [3] [11] [22]

1) Replay • • • • • • • • • • • • • • • • •
2) Relay • • • • • • • • • • •
3) Re-identification • • • • • • •
4) False Report • • • • •
5) Bluetooth-based Tracking • • • •
6) Compromised Mobile Device • • • •
7) Linking • • • •
8) Backend Impersonation • • •
9) Diagnosis Server Compromise • • •
10) Profiling • • •
11) Storage Drainage • • •
12) Battery Exhaustion • •
13) Coercion Threat • •
14) Jamming • •
15) Network Traffic Analysis • •
16) Time Machine • •

17)
Forensics and Physical
Access to Devices

•

18) Linking Diagnosis Keys •
19) Occasional Disclosure •
20) Passive Disruption •

21)
Private Encounter
Disclosure

•

22) Simulated EN •
23) Troll •

Each disclosed attack is reviewed as follows:

1. Replay - An attacker sends RPIs that were received from another device [10]. In

12



[39], the author replayed released RPIs from the health authority and managed to

trigger a exposure warning in the target. [30] identifies this attack as a cybersecurity

risk for contact tracing systems. Others [4, 7, 25] defined scenarios such as tweak-

ing the advertising interval from receiving and sending the RPIs. [12] presents an

approach using a malicious Software Development Kit (SDK) injected in an App to

replay received identifiers. [7] named this attack as Fregoli. This attack can also

be considered the same as the Disruption risk in [22]. Mitigation strategies for this

type of attack have been proposed using protocols and location of devices [4, 7, 25,

34, 39]. [27] mentions the Contact Pollution attack that is identical to the Replay

in [39].

1.1. Belated Replay - Attacker derives RPIs from publicly published TEKs and

replays them. It is also known as RPI Spoofing using reported diagnosis keys

in [22]. In [29] this attack is presented as Still-Valid Keys (Kiss attack). The

keys published are usually outdated, but some are still valid since RPI’s life

tolerance is set to 2 hours. In [29] authors analyzed that with interoperability

between countries, the health authorities do not publish the keys at the same

time. The adversary can obtain keys from one country and use them in another.

1.2. False Positive - The attacker uses a SDK to obtain RPIs from a server and then

replays them to the surrounding users [11].

1.3. Missile - The attacker uses a Bluetooth amplifier transmitter to broadcast in-

fected RPIs to users far away [7].

2. Relay - Similar to the Replay; an attacker receives a RPI in one location and replays it

using a different device in another location [30]. The authors in [16, 25, 39] present

the attack exploring the fact that EN protocol do not register each encounter’s

location data. In [17] the authors propose that this attack can be used for voter

suppression during the pandemic of COVID-19. [5] implemented this attack using

devices such as Raspberry Pis to relay RPIs across a city. [15] suggests that the

mitigation strategies for this type of attack may introduce significant complexity to

the system. Similarly to the Replay attack, [30] proposes a new protocol to mitigate

this vulnerability.
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3. Re-identification - An attacker collects a target’s RPIs and links them to diagnosis

keys published by the Health Authority [22].

3.1. Paparazzi - Similar to the Singling-out, an attacker, using passive BLE devices,

captures the RPIs from a specific user and checks them later for positive matches

[39]. In [4, 7], the authors analyze this attack in the context of a massive

surveillance system and added two attacks, Orwell and Matrix. These attacks

only differ from the Paparazzi in the attacker’s capabilities and, as such, they

are not considered as different attacks from the Paparazzi.

3.2. Singling-out - An attacker records only 1 RPI, and can then check if a given

user is infected when the health authority publishes new TEKs [25]. In [27], the

authors executed a similar attack named Contact Isolation. They managed to

link a RPI to a device. This work also proposes other advanced techniques to

link the RPI to a device, such as using Wi-Fi data or the smartphone’s camera.

This attack is also mentioned in [7] as the Gossip attack.

4. False Report - The attackers can falsely report their own keys as infected and gen-

erate alerts in other users [39]. This attack is also mentioned in [22] as Server Data

Pollution.

4.1. Impersonation - A malicious user tests positive and reports another user’s re-

porting data [10].

4.2. Terrorist Report - In [3], authors disclose a blockchain black market solution

that allows safely selling and buying infected keys. This attack is mentioned in

[6] as Tracing Forgery.

5. Bluetooth-based tracking - According to [22], switching on Bluetooth leaves the user

at risk of any risk already present in the Bluetooth stack.

5.1. Bluetooth Beacon - Attacker uses a Bluetooth beacon to collect information

about active Bluetooth devices. [39].

5.2. Eavesdropping - Attacker captures RPIs with sniffers to build movement profiles

for the users [16, 28].
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6. Compromised Mobile Device - EN stores information on the device that can be used

to determine the infection status of a user [22]. An attacker can potentially verify

if the user has uploaded any TEKs. SDKs can be used to massively deploy attacks

in mobile devices [11]. In [12, 17] it is detailed that an attacker can covertly use a

malicious SDK to capture RPIs and store their geolocation, or start replaying them

with other devices using the same SDK.

6.1. Biosurveillance - Massive surveillance technique to harvest information about

users’ infection status [11]. At a large scale, the attacker can gather information

in a region and what users might be infected.

7. Linking - An attacker associates two transmitted RPIs to the same device. The

author in [25] considers using the message timing and signal strength to link the

received messages. It also suggested to use rejection sample techniques to add noise

to the signal strength.

7.1. Address Carryover - Bluetooth MAC rotation and RPIs rotation are not aligned

and an attacker links two anonymous identifiers to the same device [10]. This

is also referred to as Tracking COVID-positive using the TEK in [22].

7.2. De-anonymization - Authors in [11] suggest using SDKs to store received RPIs

and more information such as GPS location to link a device to them.

8. Backend Impersonation - Attacker impersonates the backend server and sends spe-

cific a TEK as an infected key to the target [39]. This attack is also referred to as

Matteotti in [4, 7].

9. Diagnosis Server Compromise - An attacker with access to the diagnosis server can

potentially de-anonymize users [22].

9.1. Bombolo - The attacker tries to use the data uploaded to the Health Authority

to analyze personal contacts between users [4].

9.2. Brutus - The attacker, controlling the server and the Health Authority, tries

to map the real identity of an infected user to her uploaded data using the

authentication mechanism [4, 7].
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10. Profiling - An attacker captures a user’s RPIs and tracks them [39]. Authors in

[5] test this attack by deploying devices to capture RPIs in critical points in a city.

Whenever a key is reported, they check if there is a match, and can then trace the

movements of a specific user.

10.1. Nerd - A malicious App that collects specific information (such as GPS location,

timestamps, or Wi-Fi networks) for each encounter simultaneously as the EN

[39]. All the data can be inserted in a database and be further used to identify

reported cases.

11. Storage Drainage - An attacker sends valid RPIs to the target and occupies storage

space on the device [8, 25, 28].

12. Battery Exhaustion - An attacker sends large quantities of RPIs to a target exhaust-

ing its battery. This DoS-based attack is mentioned in [25, 28], and the authors high-

light that the users tend to reject and uninstall the Contact Tracing Apps assuming

that they will increase of the battery consumption rate. Authors in [25] propose to

use a proof-of-work to check if a received message is valid when under a high request

load.

13. Coercion Threat - Since EN stores collected data on the device, the attacker can

force the targets to reveal their infection status [16, 39].

13.1. Militia - A community of people with access to data collected by other attacks

such as the Nerd attack can use that information to threaten infected people

and isolate them [39].

14. Jamming - This attack consists in affecting the Bluetooth data transmission between

two devices, through a device that is constantly transmitting thousands of invalid

RPIs. Jamming is an inherent risk to systems reliant on Bluetooth [30]. In [26],

the authors present a low-cost jamming attack that uses smartphones or Raspberry

PIs to emit tokens faster than the target Apps. The authors found that distance

estimation was affected and EN received less RPIs.

15. Network Traffic Analysis - Attacker infers the target’s infection status by analyzing
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the network traffic and communications with the Health Authority’s server [22].

16. Time Machine - EN uses the device’s time to validate if a received RPI is expired

or not. If an attacker changes the time, EN will accept an already expired RPI and

generate exposure alerts if it is confirmed as infected later [6].

16.1. Set Clock Manually - Attacker manually sets the time in the target’s device to

the acceptance window of the RPIs [29].

16.2. Master of Time - The attacker changes the time on the target device, setting

the date to an earlier day, and injects RPIs that were valid for that specific

time period [29].

16.3. Rogue NTP Server - If a device is connected to the Internet, it may use a

Network Time Protocol (NTP) server to synchronize the time settings. An

attacker can use a rogue NTP server to change the target’s device time [29].

17. Forensics and Physical Access to Devices - Since EN stores information on the device,

an attacker with physical access can extract the list of received RPIs or TEKs.

18. Linking Diagnosis Key - An attacker analyses Diagnosis Keys published by the

Health Authority and links them to the same individual. [22] states that this attack

is feasible only when there are very few people with a positive diagnostic. They

suggest padding the published keys with random keys to mitigate this risk.

19. Occasional Disclosure - A user that receives an exposure alert may recall which

encounter may have lead to this potential infection [39].

20. Passive Disruption - Passive disruption attack can be performed by disabling the

resources necessary for the EN to function. [30]. In the case of Android OS, disabling

the GPS stops all the EN-based Apps.

21. Private Encounter Disclosure - Encounters between two users can be disclosed by

an attacker if the attacker can successfully raise an alert on one of their devices [39].

When one of the users reports an alert, the attacker waits to check if the other user

has an alert raised when the keys are reported to health authorities. The authors

suggest adding a delay to the releases of keys, although this may decrease efficiency.
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22. Simulated EN - Malicious App that operates similarly to EN. However, as explained

in [29], the attacker can change the signal strength when advertising, meaning that

it can be advertising from far away but it will be registered as if it was close. The

target receives the RPI and EN falsely believes the attacker is closer than he is.

23. Troll - An infected attacker attaches his device to a carrier to spread his RPIs around

unsuspecting users [25]. When his TEKs are published by the Health Authority,

multiple exposure alerts will be triggered.

All the papers surveyed were published between 2020 and 2021 and, although the

Battery Exhaustion and Storage Drainage attacks were already disclosed, there are no

measurements to quantify their impact in Android devices. Also, none of the related

works on bugs, attacks and vulnerabilities in EN targets the exhaustion of the Bluetooth

advertisement slots. Fig. 3.2 presents the number of sources that the Main Attacks have.

Replay and Relay, with 17 and 11 sources respectively, are the most referenced attacks.

Meanwhile, 7 attacks have a single source and 6 have 2 sources.
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Figure 3.2: Total of sources per Main Attack.

3.2 State-of-Art on EN Attacks Categorization

The state-of-art on existing taxonomies related to EN attacks was obtained using the

following sources of information:
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1. Review on Google and Apple’s public and official documentation regarding attacks

on EN system;

2. Survey on taxonomies and groups of attacks on previous attacks based on the EN

attacks review in Section 3.1;

3. Review of existing EN and decentralized systems attacks taxonomies: papers were

collected from a search using Google Scholar search engine with the following query:

• (”GAEN” OR ”Google/Apple Exposure Notification” OR ”Exposure Notifica-

tion”) AND ”taxonomy” AND ”attack”.

1) Public Documentation: 1 2) Papers in review: 21

Filter by # of
attacks over 1

# of Papers after Filtering: 9

Filter by
papers with
categories

# of Papers after Filtering: 8

3) Taxonomies: 19

Figure 3.3: Stages and numbers of the selection process.

From the analysis of the sources above, the source (1) returned 1 public and official

document focusing attacks on the EN, the source (2) returned 21 papers, and the source

(3) returned 19 papers. Then, these results were filtered to obtain the papers that had

at least more than 1 attack described. After this stage, the total number of papers was

9. Then, a filter was applied in order to exclude papers with no characterizations or

taxonomies. The final number of papers was 8.
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In the public document [22], Google provides a list of security and privacy risks on

EN and the measures taken in the design of EN to mitigate those risks. Fig. 3.4 presents

a graphical representation of this list. These attacks are categorized according to their

main objective: tracking, learning social interactions, learning COVID-positive status, or

disruption of the system.

Risks

Disruption

RPI Spoofing using Reported Diagnosis Keys

Relaying RPIs

Server Data Pollution

Learning COVID-positive status

Re-identification

Network Traffic Analysis

Diagnosis Server Compromise

Compromised Mobile Device

Forensics and Physical Access to Devices

Learning Social Interactions Exposure Notification Identification

Tracking

Bluetooth-based Tracking

Tracking COVID-positive users using the TEK

Linking Diagnosis Keys

Figure 3.4: EN risks identified in [22].

The Tracking category includes attacks that use features of the EN system to track a

user infection status like the Bluetooth Tracking attack or tracking users by TEKs. The

Learning social interactions category includes the attacks where an attacker tries to infer

if an user has met with the infected person by analyzing if the exposure warning is raised

or not. The Learning Covid-positive status category involves a more direct approach to

ascertain the infection status of a user. Either by compromising the diagnosis server, the

mobile device or performing a forensics analysis on the device, the attacker can validate

the status of the user. In the other attacks, network traffic analysis and re-identification,

the attacker has to analyze the HTTPS communications between the user and servers or

analyze the RPIs and compare them with the infected ones. The Disruption category

involves actively injecting false RPIs and compromising the integrity of the data stored in

the devices. These RPIs can be spoofed from a diagnosis key reported, relayed to another

location as the relay attack in [25].
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In [39], the author introduces a large number of attacks and categorizations. This paper

is one of the first presenting vulnerabilities of the EN system. Fig. 3.5 is a representation of

these categorizations. The author groups the attacks into two main categories: False Alert

Injection and Tracking. There is a subcategory in Tracking for Deanonymizing Known

Reported Users. The Tracking attacks involve obtaining information about a user and

his infection status. The attacks range from using Bluetooth beacons to capture RPIs to

coercion and physical threats. A subset of attacks for deanonymization use techniques to

capture RPIs of a specific user and then compare them with the ones released as infected.

False Alert Injection attacks involve sending either false or stolen RPIs and TEKs to other

users and cause an exposure alert. This can be done with either Replay and Relay attacks

or even falsely reporting a TEK as infected. This categorization provides a one level

categorization for the attacks with the false alert injection and tracking categories. Given

the characteristics of the analyzed attacks, this categorization could have more granularity

in their differentiation.

Attacks

False Alert Injection

Relay

Replay

Replay of Released Cases

False Report

Backend Impersonation

Tracking

Coercion Threats

Disclosing Private Encounters

Deanonymizing Known Reported Users

Occasional disclosure

Paparazzi

Nerd

Militia
Using the Bluetooth Beacon

Figure 3.5: Attacks identified in [39].

In [16], the authors present a privacy threat model that includes multiple attacks on

the EN system. This model associates specific goals to each of the identified attacks, so

this taxonomy in Fig. 3.6 is a graphical representation of the attacks and the attacker’s

goals. The attacks are similar to the ones disclosed in [22] and [39]. Eavesdropping involves

capturing the RPIs sent by EN. The data disclosure, coercion, and spoofing, tracking and

replay have already been explained previously. The attacks were previously analyzed in

Section 3.1. This taxonomy differs from the others presented in this state-of-art review

21



since it focuses on the goals of the attack. It presents a multiple scenarios and variants

for each attack and it provides one level of categorization.

Attacks

Coercion

Stored data compromise

Identification

Secondary use

Data Disclosure

Stored data compromise

Identification

Linkability

Eavesdropping

Surveillance

Identification

Linkability

Spoofing Tracking Replay

Integrity compromise

Misatribution

Exclusion

Identification

Stored data compromise

Figure 3.6: Attacks identified in [16].

In [4], authors present an alternative decentralized contact tracing system that they

consider better prepared for Mass Surveillance attacks. Multiple attacks, including the

ones in [39], are presented and the authors categorize them as Mass Surveillance or as

Other. The attacks presented as other are either variants of the Replay attack in [39]

or examples of attacks such as the Singling-out [39]. The Mass Surveillance attacks are

variants of compromised scenarios, such as compromising the backend, the EN App or the

health authority. It focuses in checking the infection status of the users or tracking their

contacts with other people. Fig. 3.7 is a graphical representation of this classification.

This categorization focuses particularly on the Mass Surveillance type attacks and is not

a general classification. Other attacks can also be added and more classification levels can

also be included.

In [7], the authors present an alternative to contact tracing system to EN and compare

the vulnerabilities on the exchange of ephemeral identifiers that are present in the de-
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Attacks

Other

Bombolo

Gossip

Matteotti

Replay

Mass Surveillance

Paparazzi

Orwell

Matrix

Brutus

Figure 3.7: Attacks identified in [4].

centralized system with their own. The paper mentions linkability and low-cost as terms

related to the attacks, and despite not presenting a specific category, we consider that the

paper’s attacks are classified as a linking related attack type. The categorization is pre-

sented in Fig. 3.8. This classification is focused only on attacks that target the exchange

of identifiers. Since it does not mention other existing attacks at the time identified in

[39], it is not taken as a general taxonomy for EN attacks. All the mentioned attacks are

related with linkability and each explores different parts of the EN system with scenarios

such as collusion between attackers and the Health Authority.

Attacks Linking

Fregoli

Missile

Matteotti

Gossip

Brutus

Orwell

Paparazzi

Figure 3.8: Attacks identified in [7].

In [27], the authors present two attacks, Contact Pollution and Contact Isolation, re-

spectively identifying them as Data Poisoning and Privacy type attacks. Fig. 3.9 represents

the mentioned classification. This classification is provided only for two attacks discovered

by the authors. The categories divide the attacks by how they affect the data integrity and
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the privacy of the user. The attacks are similar to the Replay and Singling-out attacks.

Attacks
Data Poisoning Contact Pollution

Privacy Contact Isolation

Figure 3.9: Attacks and categories extracted from [27].

In [5], the authors analyze 2 types of attacks: Security and Privacy. They also test those

attacks in real scenarios. Fig. 3.10 depicts the classifications provided for the attacks. As

the previous papers, this classification is only provided for the attacks tested or discovered

by the authors. Both attacks can be included in the definition provided in [39].

Attacks
Security Relay Wormhole

Privacy Profiling

Figure 3.10: Attacks and categories extracted from [5].

The authors in [29] explore multiple attacks that falsely inject an identifier in the target.

As in [39], this category is named False Alert Injection. Similar to previous papers, this is

not a general taxonomy or classification for EN attacks. However, it provides information

about different False Alert Injection attacks and how they are executed. In this paper,

the attacks related to Time Travelling are introduced for the first time with which an

attacker manipulates the time in a device so EN accepts an outdated key. This attacks

are the Master of Time and Belated Replay. Another type of attack for injecting false

alerts is using an App that simulates the EN’s behaviour or using infected TEKs from

other countries that are still valid in other countries.

Attacks False Alert Injection

Replay

Simulated EN

Belated Replay

KISS

Still-Valid Keys

Master of Time

Figure 3.11: Attacks and categories extracted from [29].

Fig. 3.12 is the taxonomy presented in [9] for general attacks on contact tracing. The
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authors divided the attacks into three main categories, distinguishing them by what tech-

nology they use: Bluetooth, GPS, or generic for both systems. The attacks on Bluetooth

based Solutions Bluesnarfing and Bluebugging, involve establishing a connection with the

target, which is impossible with the Bluetooth advertising feature. Bluejacking allows

the attacker to send unsolicited messages to the target. Most Generic attacks have been

explained in previous classifications and in Section 3.1, except for Resource Drain and

Screen Lock. The first involves sending messages to waste resources such as the battery,

and the latter is a ransomware attack that locks the target’s screen when installing a fake

contact tracing App.

Attacks

Bluetooth based Solutions

Bluejacking

Bluesnarfing

Bluebugging

GPS based Solutions
Jamming

Spoofing

Generic

Resource drain

Backend Impersonation

Trolling

Replay

Proximity App

Tracking and Deanonymization

False Alert Injection

False Report

Relay

Screen Lock

Figure 3.12: Contact tracing attacks taxonomy from [9].

Fig. 3.13 displays the selected papers grouped by the month of their publication date

in a timeline starting from the launch of EN, 2020, to the present. From this information

is is possible to check that these research works were proposed from April 2020 to March

2021, using categorizations to incorporate the disclosed EN attacks.

As a final remark regarding this state-of-art review, there is no general and updated
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[9]
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[16], [4]

12/2020

[27]

02/2021

[5]

04/2021

[29]

Figure 3.13: Timeline of the reviewed papers for the attacks on EN grouped by the month
of their publication date.

taxonomy for EN-based attacks. Google’s categorization concerns specific attacks that are

common to decentralized contact tracing systems and if the EN is vulnerable to them or

not. It does not include the latest known attacks. Likewise, the taxonomy found in [9] is

not specific to the EN system, and its’ objective is distinguishing attacks that target GPS,

Bluetooth, or that are generic for both system types. The taxonomies analyzed in the

papers mentioned in the systematic review of Section 3.1, are not general taxonomies, can

be extended in their granularity, since they use only one level classification, and they do not

include all the known attacks. The focus of the categorizations found is usually classifying

a subset of attacks discovered or tested by the authors. Some of the classifications, such

as the one in [39], have been adopted by more authors in recent papers.
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Chapter 4

Advertising Overflow Attack

This chapter details the novel internal DoS-based attack - the Advertising Overflow

attack. Fig.4.1 presents the normal operation scenario (on the left) and an attack scenario

(on the right).

Bluetooth
advertising

slots

Bluetooth
advertising

slots

free
free

free

EN

Covid
Tracing App

App Malicious
AppEN

Covid
Tracing App

App

Figure 4.1: Normal operation scenario (left side) and attack scenario (right side).

In the normal operation scenario, each time EN or another App sends a Bluetooth

advertisement, it requires the Android OS to place it in an available advertising slot.

The advertising slots are a global resource shared between all the Apps in the device,

and the maximum capacity is dependent on the device’s Bluetooth chip [41]. When an
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advertisement is placed by an App, the App is also responsible for removing it from the

advertising slots; otherwise the Android OS will keep advertising/transmitting it until, for

instance, the user disables the Bluetooth interface.

In the Android OS, an App can execute code when device events occur, such as ad-

vertising when a device reboots. To capture the event when it occurs, the App needs to

implement a BroadcastReceiver class that will be executed and set a priority for the class

ranging from -999 to 999. A higher priority means that this receiver will be executed by

the OS before others capture the same event. However, an App (including EN) with a

higher priority will not be able to place an advertisement if the advertising slots are already

occupied. The Apps are expected to handle the cases when there are no slots available,

for example, by creating an internal buffer where advertisements will wait before trying to

place them again in the advertisement slots. The EN default operation sets the priority to

a given value different from the maximum one) and so, the EN does not have the highest

priority access to these slots. The EN system needs, at least, one slot available in the

Bluetooth advertisements slots.

In the attack scenario depicted in the right part of the Fig. 4.1, instead of having

multiple Apps using advertisement slots, a malicious App occupies all the available slots

in the device without ever releasing them, leaving no free slots for other apps to place

their advertisements. Since the advertisement slots are shared between all the Apps in the

device, an App can occupy all these slots when, for example, the device reboots. If an App

occupies all the slots, according to the code publicly available in [24], the EN will throw the

advertisement error “ADVERTISE FAILED TOO MANY ADVERTISERS” when trying

to advertise, thrown by the AdvertiseCallback onStartFailure() method. This error is de-

fined by Google in [18] as ”not having any advertising instance available”. After throwing

the advertisement error, the EN will drop the advertisement and generate a new RPI to

be sent. Since Android OS does not implement a timeout to automatically remove adver-

tisements and the advertisement slots are only released by the App that occupied them,

if a malicious App keeps occupying slots without releasing them, the advertisement error

described above will repeat indefinitely. Using an already installed App with Bluetooth

access, an attacker that controls an SDK can use the Bluetooth advertising feature of the

device and start this attack unknowingly to the owner. This attack affects the EN and
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any other App depending on the Bluetooth advertisement slots.

This attack was first found during the tests for the Battery Exhaustion and Storage

Drainage. An Android App was developed to use the Bluetooth Advertising feature like

EN to measure the efficiency of these attacks. This malicious App’s objective was to send

thousands of RPIs in a short time interval and store the transmitted data for further

analysis. However, during the tests, the App could never place more than 15 simultaneous

Bluetooth advertisements. Upon further investigation of the App’s logs, the error was

found, and it was always displayed when there were more than 15 advertisements. The

malicious App was installed on other Android devices, and it showed the same error at 15

placed advertisements.

After finding a maximum limit, it was analyzed if the malicious App kept the same

number of advertisements during an extended period instead of a short interval. As

a result, the execution period of the malicious App was extended to 1 hour, and the

advertisements were never removed. This finding concluded that the advertisements could

be kept longer than EN’s rotation period for RPIs.

Then, the malicious App was designed to start advertising as soon as one of the

triggering events of EN advertising happened, e.g. by device reboot or enabling Bluetooth

interface. Since it is possible for any App to place a listener for those events, it was also

possible for the malicious App’s code to be executed before the EN’s code if it had a higher

priority. After researching the available listener priorities, the malicious App was modified

to include a listener for the device’s reboot and enabling Bluetooth. The App was deployed

on a smartphone with Stayaway Covid installed, and then the device rebooted. After it

turned on, the device’s logs showed that the EN system was throwing errors because it

could not advertise any RPIs.

After validating this new attack, research was conducted to validate if any attacks

resembled the Advertising Overflow or if it was indeed a novel attack. As seen in the

review in Section 3.1, the closest existing attacks are the Battery Exhaustion and Storage

Drainage, both DoS attacks on the EN system. However, both attacks do not block the

EN’s advertisements but focus instead on depleting the internal device’s resources such as

the battery or storage. In addition, they need an external device to transmit the data,

while Advertising Overflow requires an App on the same smartphone.

29



Chapter 5

Impact Assessment of DoS-based

Attacks

This chapter presents the impact assessment of a subset of DoS-based attacks, namely,

Battery Exhaustion, Storage Drain, and the Advertising Overflow attack.

5.1 Testbed

The assessment on each attack was performed by using eight smartphones of three

different models as presented in Table 5.1. Two devices are used as targets and the other

six are used as attackers. The Target 1 (T1) consists of a Nokia 8 model, featuring 4GB

of RAM, a Snapdragron 835 CPU, and with an Android OS version 9 (Pie). The Target 2

(T2) consists of a Samsung Tab A 2019 model, featuring 2GB of RAM, a Lassen O+ CPU,

and with an Android OS version 9 (Pie). Initial tests conducted with one attacker towards

both targets defined revealed no measurable impact regarding the Battery Exhaustion and

the Storage Drain attacks. Thus, instead of using a one-to-one scenario, six attackers were

used. The six attackers are labeled as Attacker 1 to Attacker 6 (A1-6), and the set consist

of Altice S23 models, featuring 1GB of RAM, a Cortex-A53 CPU, and with an Android

OS version 8.1 (Oreo). All eight devices have Bluetooth version 5.

A testbed environment was set up according to Fig. 5.1. The attackers have a Malicious

App installed, which is an Android App developed to send simultaneous advertisements

(15 advertisements is the maximum on all devices tested), each one containing an RPI.
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Table 5.1: Models and specifications for the smart phones used.

Device Model RAM CPU
Android
version

T1 Nokia 8 4GB Snapdragon 835 9

T2 Samsung Tab A2019 2GB Lassen O+ 9

A1-6 Altice S23 1GB Cortex-A53 8.1

T1 / T2

Wi-Fi

Battery
(1)

A1

Analyser PC

ADB

A6

Python
script

Malicious
App

(1)(2)

Results

Logs
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...

EN

Covid
Tracing App

Internal
Malicious

App
(3)

0.5 meters

RPI1

RPI2

RPIn

...

Malicious
App

(1)(2)

Storage
(2)

Bluetooth

Figure 5.1: Testbed Environment.

The generation of RPIs and advertising settings follows the publicly available source code

for EN [24]. In both target devices the a Contact Tracing App (Stayaway Covid) was

installed and the EN was enabled in the settings. Three attacks were performed: (1)

the reception and processing of RPIs are used to check battery discharge to measure the

impact of battery exhaustion attack; in (2) the reception and processing of RPIs are used

to monitor storage usage to measure the impact of storage drain attack, and in (3) the

use of an Internal Malicious App allows to measure the impact of the advertising overflow

attack.

To collect the results, an Analyser PC was connected via Wi-Fi to the target devices,
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and with the following tools installed: Android Debug Bridge (ADB) [20] and Battery His-

torian [35]. The ADB tool monitors in real time the targets and generates bug reports and

logs, providing information about the state and tasks of the device during the tests such

as battery and CPU usage, Apps on foreground, and wake-locks. The Battery Historian

tool was used to present the information into readable graphs and charts. A Python script

was developed to process the accumulated logs from ADB tool and to generate statistics

about the number of advertisements scanned and other EN-related information such as

scan’s interval and frequency, and the errors thrown by EN. The results are statistic data

from the Battery Historian and the Python script.

The tests are performed using a ”Baseline” scenario, i.e. a scenario with no attackers or

Malicious Apps, which is compared with an ”Attack” scenario. Specific details and results

are presented in the following subsections. Prior to each test, each target is rebooted,

the Google Play Services and the Stayaway Covid App cache and storage wiped, the logs

collection over ADB reset, and the battery collection reset.

5.2 Battery Exhaustion

According to [25], an attacker can advertise either valid or invalid RPI to a target

device. In turn, the device will wakeup and process the received RPI. These actions

require energy and discharge the battery. The attack is depicted in Fig. 5.2.

T1

Analyser PC

A1

...

RPI1

RPI2

RPIn

...

A6 T2

0.5 meters

Figure 5.2: Battery Exhaustion attack in which attackers send RPIs to targets to and
wastes their battery.

Android OS Bluetooth advertisements can be configured according to parameters de-

fined in [19]. These configurations include the advertising interval (“INTERVAL” config-
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urations) and the range of the Bluetooth transmissions (“TX POWER” configurations).

By default, EN uses ”INTERVAL MEDIUM” (one advertisement around every 250ms)

and ”TX POWER LOW” power level. However, for the attackers, the Android advertis-

ing procedure was setup to generate the maximum number of advertisements (15), the

advertising frequency was set to ”INTERVAL LOW” (one advertisement around every

100ms) and the power level was set to ”TX POWER HIGH” (the largest visibility range

for an advertising packet).

A round of 10 tests were performed for each target, where each test has a duration of 1

hour. Before executing each test, the Bluetooth setting was disabled and enabled again to

trigger the first EN scan. After an hour has passed, Bluetooth is disabled, and a new bug

report is generated with the last hour’s statistics. In the ”Baseline” scenario, the attackers

behave with EN active in a regular operation. In the ”Attack” scenario, the attackers were

deployed with a Malicious App active around the target. For each scenario, the battery

discharge for each target was collected and Battery Historian provided calculations for the

device’s battery consumption and the CPU usage time for the duration of the test.

The results for battery discharge (in percentage) and Bluetooth CPU time (in seconds)

for each test, and for the T1 and T2 are presented in Table 5.2. Average value, its standard

deviation (σ), and the ratio between Attack (A) and Baseline (B), was calculated. Each

test result was plotted in Fig. 5.3.

Table 5.2: Battery Discharge tests results for the T1-2 devices.

Test
#

T1

Battery Dis.
(%)

T1

CPU time
(seconds)

T2

Battery Dis.
(%)

T2

CPU time
(seconds)

B A B A B A B A

1 0.780 2.940 1.280 12.52 0 1.000 2.008 17.648

2 0.740 1.590 0.830 9.025 0 1.100 1.190 20.984

3 0.830 1.530 0.920 13.290 0 0.950 2.096 16.760

4 1.000 1.960 1.415 14.065 0 0.890 1.800 19.144

5 0.960 1.570 1.290 13.660 0 0.890 1.208 12.816

6 0.940 2.000 0.680 13.665 0 0.920 2.146 16.648

7 0.950 1.490 1.000 11.320 0 0.900 2.560 17.840

8 0.990 1.660 0.820 10.010 0 0.850 2.692 15.760

9 1.000 1.450 0.930 10.270 0 0.790 2.794 13.144

10 0.990 1.770 0.740 12.050 0 0.890 2.122 16.860

Avg 0.918 1.796 0.991 11.988 0 0.918 2.062 16.760

σ 0.1 0.4 0.3 1.8 0 0.1 0.6 2.5

Ratio 1.956 12.102 n.a 8.130
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The results show that the average battery discharge for T1 resulted in 0.918% for the

Baseline, and in 1.796% for the attack. For T2, the average battery discharge was 0% for

the Baseline and 0.918% for the Attack. The Baseline for T2 resulted in a 0% because

the Android operating system could not measure the small amount of energy taken by

Bluetooth in a regular operation of this device. We assume that the differences of the

baseline results between T1 and T2 can be explained by the fact that T1 is 3 years older

than the other device. The attack/baseline ratio for T1 was 1.956 and for T2 could not be

calculated since baseline was 0%. Regarding the Bluetooth CPU usage time, the obtained

ratios for T1 and T2 show an increase of 12.102 times and 8.130 times, respectively.
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Figure 5.3: Battery consumption and Bluetooth CPU usage for T1 and T2.

5.3 Storage Drain

According to [25], an adversary can generate and advertise valid RPIs that the target’s

device will process and store. In case a high number of RPIs are received, they will occupy

storage space to an extent. Fig. 5.4 depicts the storage drain attack.

The T1 and T2 devices are in a normal operation mode and transmitting one RPI at

a time. However, A1-6 sends valid RPIs in the order of thousands that will be processed

and stored by the targets.

A round of 10 tests was done for each device with a duration of 15 minutes, which

amounts to around 3 EN scans per test. After the tests ends, the total storage space
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Figure 5.4: Storage drain attack in which attackers send RPIs to targets to occupy their
storage space.

occupied by the Google Play services folder in the device is analyzed with a Python

script. For each scenario the logs of the targets were collected to count the total number

of advertisements.

In ”Baseline” scenario, EN is active in all the devices in a normal operation mode. In

the ”Attack” scenario, the attackers have the malicious App active instead of EN, and

sending multiple advertisements to T1-2.

The results for occupied storage space (in kBytes) and total number of RPIs received

for each test, and for the T1 and T2 are presented in Table 5.3. Average value, its standard

deviation (σ), and the ratio between Attack (A) and Baseline (B), was calculated. Each

test result was plotted in Fig. 5.5.

Table 5.3: Storage Occupancy tests for the devices T1-2.

Test
#

T1

Storage(kB)
T1

# of RPIs
T2

Storage(kB)
T2

# of RPIs
B A B A B A B A

1 5.78 190.32 275 9063 6.11 187.99 297 8809

2 4.39 198.93 209 9473 5.88 194.59 280 9171

3 4.91 180.85 234 8993 6.17 178.77 294 8989

4 5.82 178.14 277 8864 6.03 185.05 287 9288

5 5.10 182.00 243 9143 5.69 189.81 271 8611

6 5.36 192.11 255 9148 6.22 188.98 301 8999

7 4.24 198.56 202 9455 6.05 196.16 289 9341

8 4.98 188.62 237 8982 5.96 188.10 284 8957

9 5.75 186.06 274 8860 5.88 198.62 280 9458

10 5.08 194.04 242 9240 5.61 182.95 267 8712

Avg 5.14 188.96 244.8 9122.1 5.96 189.10 285 9033.5

σ 0.55 7.22 26.3 217.1 0.2 6.1 10.9 278.8

Ratio 36.758 37.263 31.726 31.696

The results show that the average storage space occupied for T1 for the baseline was
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5.14 kB, and 188.96 kB for the attack. For T2, the occupied space was 5.96 kB for the

baseline and 189.10 kB for the attack.

The attack/baseline ratio for the storage occupation in T1 was 36.758 and 31.726 in

T2. In both scenarios, the devices registered a similar total number of RPIs. The baseline

for both devices registered between 200 and 300 RPIs. In contrast, the attack scenario

has between 8600 and 9600 registered RPIs. The total of RPIs presented similar ratios,

of 37.263 for T1 and 31.696 for T2. When the total of received RPIs grows, the occupied

storage also increases. Internally, EN removes stored duplicates and uses compression

techniques to reduce the occupied storage.
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Figure 5.5: Storage drainage statistics for both T1 and T2.

5.4 Advertising Overflow

The advertising overflow attack, when implemented correctly, can compromise the

advertising feature of the EN system since it occupies all the advertising slots. This

attack was presented in Chapter 4 and depicted in Fig. 4.1.

A test with a duration of 1 hour was performed for the two targets and two scenarios,

baseline and attack. In ”Baseline” scenario, EN is active in T1-2 in a normal operation

mode. In the ”Attack” scenario, T1-2 ran the malicious App and EN at the same time.

Before executing each test, each target device was rebooted and the Bluetooth was

restarted to trigger the first EN scan. For each scenario the target’s logs were collected to
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analyze errors and the successful advertisements.

The tests for the T1 and T2 are presented in Fig. 5.6.
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Figure 5.6: Advertisements placed by EN during the baseline and the attack tests.

The figure displays the total number of placed advertisements during an interval of 60

minutes for the two scenarios. In both scenarios, the advertising attempts by EN are also

displayed and have a different symbol if the attempt was successful or not. The maximum

limit of advertisements for the devices T1-2 is 15. The figure shows both scenarios had

a regular number of advertisements throughout the test. The baseline for both devices

had one advertisement placed in a steady frequency, about 4-5 minutes for T2 and 8-9

minutes for T1. The results also show that T2 has a higher advertising frequency than

T1. During the attack scenario, both T1 and T2 had a total of 15 advertisements placed,

and no advertisements were successfully placed by EN. The advertising attempts have

a similar frequency to ones in the baseline scenario. The errors registered in the attack

scenario did not change the frequency of advertising attempts by EN.

5.5 Discussion

The tests for the selected attacks show that they have differing levels of impact and

severity.

Battery Exhaustion attack presented a maximum discharge of 3% during the test of

one hour, using almost 2 times more battery than the baseline scenario. Although 3% of
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battery discharge in one hour can be considered as not relevant, if the number of attackers

increase, higher amounts of RPIs will be sent, and this would increase the ratio between

the baseline and attack results, thus presenting more impact Performing this attack with

a larger volume of advertisements may generate a very noticeable battery drain, especially

in older devices.

The Storage Drainage attack presented a low storage occupancy when compared to

the total storage mounted in the test devices (ranging from 64 to 128 GBytes) which can

be considered not relevant. Taking into account that this attack tries to fill the storage

space of the target, the tests show that, despite already sending 30 times more RPIs

than the baseline, it still requires more RPIs to achieve that. Also, it is not possible to

assure that the space occupied by the RPIs will remain the same throughout the day as

the compression techniques are applied. They are not publicly available in the reviewed

documentation, so the only assurances given are based on reverse engineering and behavior

analysis.

Both Storage Drainage and Battery Exhaustion attacks requires other devices close

to their targets. These attacks can be successful even if their impact in software and

hardware is not relevant, but if they are noticeable by the EN users, i.e a user checking

that the storage space is occupied by EN and he might uninstall the EN-based App.

In contrast to the previous attacks, the Advertising Overflow effectively blocked adver-

tisements from EN during the entire test and neither the Android OS or EN showed any

error notification. Thus, it can be assumed that this attack compromises the operation

of any contact tracing Apps, for any given time period. This attack blocks the operation

of any EN-based Apps such as the ones presented in the Table 2, used by over 39 million

European users.

The Advertising Overflow attack was reported to Google Security Team in April 19th,

2020. This disclosure lead to Google’s confirmation of the bug and they rewarded the

authors with the inclusion in the Google Application Security honorable mentions board.

To mitigate the impact of this attack the following strategies can be considered:

• The advertisements from EN can be prioritized above all other Apps. In case of a

device reboot, the EN will be able to advertise even if the attacker attempts to start
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advertising;

• EN can have a dedicated advertisement slots so that other Apps would not be able

to interfere with its’ behavior. This mitigation would also work in cases where an

attacker occupies all the advertising slots before the user activates EN;

• EN can notify the user if it fails to advertise in, e.g 3 consecutive intervals. Currently,

EN fails silently, and the user is not aware of the failure.

The Advertising Overflow instead of alarming the users about EN usage, it silently

affects the efficiency of digital contact tracing itself and renders the process of uploading

the TEKs useless, since no other user will have received the corresponding RPIs. Deploying

the attack at small or larger scale will always severely impact the efficiency of a digital

contact tracing solution based on EN.
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Chapter 6

The Proposed Taxonomy

The taxonomies analysis in Section 3.2 shows that there is no up-to-date taxonomies

for EN attacks. Besides the lack of recent attacks, the categorizations have also focused

in attacks discovered in the same paper they were presented in, and they usually have

a single level classification. Therefore, we propose a new taxonomy that includes all the

attacks and classifies them with a multi-level approach.

The proposed tree-like taxonomy divides all the identified attacks into three main

categories: Denial of Service, False Alert Injection, and Information Disclosure. In [12,

25, 39], authors have commonly identified novel attacks and used these categories to label

them. This proposal expands these known categorizations and adds more granularity

and levels instead of the single level classification currently used. As such, the first level

of classification is these 3 known attack classes from which more granular classifications

expand.

The second level of the taxonomy tree has 2 subcategories for each main category.

This level focuses on analyzing the outcome or target of every attack and classifies them

by their likely outcome. The definition of each subcategory takes into account the attack’s

execution method and the outcome. Each of the new subcategories is painted with the

green color in the figures.

The attacks are divided into Main Attacks and Sub-attacks according to the review

in Section 3.1. Main Attacks are in the third level and Sub-attacks in the fourth level

connected to their Main Attack.

The proposed taxonomy is designed to incorporate novel attacks. Recently, researchers
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Figure 6.1: Proposed taxonomy for EN attacks.

in [29] have uncovered a type of attack that despite belonging to the same class of the False

Alert Injection, it does not have the same execution method or likely outcome as most of

41



the others. This taxonomy allows a differentiation of these attacks and does not group

them under general categories. In this document, the Main Attacks and their Sub-attacks

in the proposed taxonomy are referenced using unique cardinal numbers as codes. Fig. 6.1

presents the proposed taxonomy with all the attack groups and the classified attacks.

Table 6.1 links the Main Attack numbers in the proposed taxonomy to the codes using

during the review on existing EN attacks. Advertising Overflow (Main Attack 1) review

code is not included because it was not part of the review.

Table 6.1: Mapping between taxonomy attack codes and the Main Attacks in Section 3.1

Taxonomy Code Review Code

1 -

2 12

3 14

4 11

5 20

6 8

7 4

8 16

9 23

10 2

11 1

12 22

13 13

14 6

15 17

16 3

17 5

18 9

19 7

20 18

21 15

22 19

23 21

24 10

6.1 Denial of Service Attacks Group

A DoS attack is an attempt at thwarting the legitimate use of a service [32]. Regard-

ing Bluetooth, this attack can stop communication between two devices by affecting the

resources in one of them. The resources range from the Bluetooth chipset’s capacity to
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the device’s battery and storage. These category’s attacks are not limited to Jamming

with a large volume of requests and include Apps that can disrupt the expected behaviour

of the EN system.

A) Denial of Service

B) Passive Disruption 5) Interface Disabling

A) Active Disruption

4) Storage Drain

3) Jamming

2) Battery Exhaustion

1) Advertising Overflow

Figure 6.2: Denial of Service attacks group.

Two categories were proposed for this type of attacks: Passive Disruption and Active

Disruption. A Passive Disruption attack thwarts the EN system by stopping OS features

that are essential to its working, for example, Bluetooth and GPS in an Android device.

By disabling Bluetooth, either manually or programmatically, the attacker is not using any

EN features to attack the system, but it is only disabling a core feature with an unrelated

measure. An Active Disruption attack affects the EN system by using features of the EN

such as flooding an area with Bluetooth messages with the UUID of EN or discharging a

device’s battery by sending fake EN Bluetooth messages. Each attack focuses on a device’s

resource, such as the battery, storage or Bluetooth interface.

The attacks categorized as active disruption are Jamming, Advertising Overflow, Re-

quests Overflow, Battery Exhaustion and Storage Drainage. Last, Interface Disabling is a

Passive Disruption technique that involves disabling the Bluetooth feature in the device,

for example.

Fig. 6.2 presents the Denial of Service attacks group in the proposed taxonomy.

6.2 False Alert Injection Attacks Group

False alert injections raise alerts of infection in an unsuspecting target that was not

exposed to an infected person. Classified by [39], having a false infection contact may lead

to discrimination or social accountability. It can be used to affect targets like football

players before a match. An attacker has to inject a specific RPI in the target’s device to

raise the false alert. The means of delivery and RPI generation vary from attack to attack.
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This category of attacks is also described as fake contact events [39].

This type of attack can be a Guaranteed Alert or a Possible Alert. These subcategories

separate the attacks by their efficacy in raising an exposure alert on the target. The

Guaranteed Alert types will always raise an alert in the target’s device. Meanwhile, the

other category is not guaranteed to reach the target or raise an exposure alert.

Replay, Relay and Simulated EN attacks use randomly obtained RPIs that may or

may not be later identified as infected, so they are of the possible alert type. On the other

hand Backend Impersonation, Time Machine, False report and Trolling attack all use

RPIs that are confirmed as infected. The Time Machine attack has also multiple variants

that execute the spoofing by abusing the validity of the RPIs by deriving identifiers from

released TEKs and changing the time on target’s device. Fig. 6.3 shows the False Alert

Injection attacks group of the proposed taxonomy.
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8.3) Rogue NTP Server

8.2) Master of Time

8.1) Set Clock Manually

7) False Report
7.2) Terrorist

7.1) Impersonation

6) Backend Impersonation

Figure 6.3: False alert injection attacks group.

6.3 Information Disclosure Attacks Group

Information Disclosure attacks compromise the anonymity assurance of the EN system

and reveal if an infected RPI comes from a certain user or even if two users have been in

close proximity or not. This category’s attacks are divided by the reliability and method
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of obtaining private data. Inferred type attacks use algorithms that analyze distance,

GPS positioning, or even EN copycat Apps (mobile Apps mimicking EN) to accumulate

information. On the other hand, Direct attacks obtain information directly from the target

and do not need to calculate/process any data.

All the Inferred attacks resort to either creating a similar App as EN to obtain more

information or using algorithms and profiling to analyze if two RPIs can be from the same

user like the Profiling attack. To validate their proximity, Private Encounter Disclosure

and Occasional Disclosure rely on checking if two users receive an exposure warning in

a similar time interval. Other advanced methods involve Compromising the Diagnosis

Server, Network Traffic Analysis between the target’s device and the server, Bluetooth

Tracking of the device and Linking either the Diagnosis Keys to a specific user or Linking

RPIs to the same device. Direct attacks are less versatile as they usually target a single

individual and can not be reused for more than one encounter. All the attacks obtain the

information directly from the target’s device by either capturing a single RPI or manually

checking the infection status on the EN-based App. Examples of these attacks range from

directly forcing the target to reveal his contact tracing App infection status (Coercion

attack), forensic analysis to the mobile device, or Re-identification techniques such as the

Singling-out or Paparazzi attacks.

Fig. 6.4 displays the Information Disclosure attacks group of the proposed taxonomy.

6.4 Discussion

The proposed taxonomy uses different categories that merges or arranges multiple cat-

egories in previous documents and focuses on distinguishing the attacks based on their

type. A total of 43 Main Attacks and Sub-attacks were incorporated in the proposed

taxonomy, including the most recent disclosed attacks. This taxonomy highlights possible

attack vectors in the EN system, useful to enhance the defense strategies of the EN sys-

tem. By analyzing how many attacks focus on a specific feature or vulnerability of EN,

such as False Alert Injection or a DoS, the researchers community can focus on specific

vulnerabilities that should be prioritized.

Table 6.2 groups the Main Attacks presented in the taxonomy by their publication date
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Figure 6.4: Information disclosure attacks group.

and Fig. 6.5 presents the evolution of the cumulative number of Main Attacks. From these

results, in the initial month on April 2020 there was an atypical number of disclosed attacks

since it matched the official release of the EN system, and Google’s documentation [22] and

Vaudenay [39] present a large number of Main Attacks for EN in Information Disclosure

and False Alert Injection. After the first month, the uncovered Main Attacks never exceed

the total of 3 in a single month. It is also relevant to notice that Denial of Service attacks

started to be disclosed on June 2020.

Table 6.2: Taxonomy’s Main Attacks grouped by the first time they were presented in a
paper.

Date Main Attacks

April, 2020 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24

July, 2020 5

September, 2020 2, 4, 19

November, 2020 3, 8

July, 2021 1

Fig. 6.6 shows the attacks distribution by each main category (False Alert Injection,

Information Disclosure and Denial of Service). From this data the Information Disclosure
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attacks represent the majority of the attacks with 53% and the Denial of Service attacks

represent 14% of the total attacks.
04

/2
0

07
/2

0

09
/2

0

11
/2

0

07
/2

1

0

10

20

30

40

50

Publication date

C
u

m
u

la
ti

ve
#

of
M

ai
n

A
tt

ac
k
s

Information Disclosure

False Alert Injection

Denial of Service

Figure 6.5: Evolution of the cumulative number of EN Main Attacks grouped by category.

Information Disclosure

55%

False Alert Injection

33% Denial of Service

12%

Figure 6.6: Distribution of Main Attacks by main category.

47



Chapter 7

Conclusions

The digital contact tracing Apps based on EN are used to aid in the fight against

COVID-19 rely on widespread usage and data integrity to monitor the exposure of an

user. The mobile Apps using the built-in sensor in the devices, Bluetooth and GPS, track

the infection exposure of a user and can then warn him if he has been in at risk.

Despite the claims of concerns related to security and privacy, multiple attacks have

been identified on the EN system and they target the integrity of the data and the privacy

of an infected user.

A novel Advertising Overflow attack was also presented following the taxonomy pro-

posal. Using a malicious App, an attacker can block the advertisements of EN by occupying

the Bluetooth advertising slots of an Android OS device.

Advertising Overflow compromises the contact tracing expected behavior which has a

severe impact if deployed in any scale. The attack can be conveyed by a Malicious or an

SDK. Besides impacting EN, this attack will also affect any other Apps that use Bluetooth

advertisements.

This and other two tested DoS attacks (Battery Exhaustion and Storage Drain) were

tested on Android OS devices to verify their impact. The Battery Exhaustion attack

presented an increase of 1.956 times the usual battery discharge. Regarding Storage Drain

the results show that, despite occupying 30 to 40 times more storage space, the impact of

the Storage Drain is not relevant in overall Android OS.

Regarding the Advertising Overflow attack the tests show that it can effectively stop

the expected advertising behavior from EN. This attack is also not limited to a interval
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of 1 hour, as it can disrupts the operation of EN for longer periods of time.

A new taxonomy for EN-based attacks is also presented. This taxonomy uses a granular

and multi-level approach in a tree-like structure. Besides the granularity, all the known EN

attacks have been included in this review. All the currently known attacks are separated

according to three main categories, DoS, False Alert Injection, and Information Disclosure.

This paper introduces 6 new subcategories for the attacks. With these new categories,

the taxonomy allows a better understanding of EN’s current attack vectors and highlights

areas that can be further explored, analyzed and fixed.

The impact of Advertising Overflow attack can also be further tested on other BLE

features on Apple’s iOS. Regarding the taxonomy, it can also be further improved by

testing the attacks in each OS and then divide them by the OS that they target.
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