
Escola Superior de Tecnologia e Gestão

AN ARCHITECTURE TO

GENERATE CLASSIFIED DATASETS

AND IMPROVE PERFORMANCE OF

INTRUSION DETECTION SYSTEMS

Diogo Francisco Rodrigues Teixeira

Diogo Francisco Rodrigues Teixeira

AN ARCHITECTURE TO

GENERATE CLASSIFIED DATASETS AND IMPROVE

PERFORMANCE OF INTRUSION DETECTION SYSTEMS

Nome do curso de Mestrado

Mestrado em Cibersegurança

Trabalho efetuado sob a supervisão de

Professor Pedro Filipe Cruz Pinto

Professor Silvestre Lomba Malta

Abril de 2022

C

C

C

C

C

C

�������
����
�
�����	������
�������
�
����������
��

An Architecture to

Generate Classified Datasets and Improve

Performance of Intrusion Detection Systems

a master’s thesis authored by

Diogo Francisco Rodrigues Teixeira

and supervised by

Pedro Filipe Cruz Pinto

Professor Adjunto, IPVC

Silvestre Lomba Malta

Professor Assistente, IPVC

This thesis was submitted in partial fulfilment of the requirements for the

Master’s degree in Cybersecurity at the Instituto Politécnico de Viana do CasteloVersão horizontal
(Principal)

Versão vertical

19 of April, 2022

Abstract

Nowadays, a set of services are available online with various associated data. It is

essential to ensure the availability, integrity and confidentiality of all data. However,

cyberattacks are a major threat. In this sense, an Intrusion Detection System (IDS) is an

important tool to prevent potential threats to systems and data.

It is necessary to implement new mechanisms with intelligence to successfully defend

the complexity and intelligence of attacks, that is, to increase their efficiency.

Anomaly-based IDSs may deploy machine learning algorithms to classify events ei-

ther as normal or anomalous and trigger the adequate response. When using supervised

learning, these algorithms require classified, rich, and recent datasets. Thus, to foster the

performance of these machine learning models, datasets can be generated from different

sources in a collaborative approach, and trained with multiple algorithms.

This document proposes a vote-based architecture to generate classified datasets and

improve performance of supervised learning-based IDSs. In a regular basis, multiple IDSs

in different locations (companies) send their logs to a central system that combines and

classifies them using different machine learning models and a majority vote system. Then,

it generates a new and classified dataset, which is trained to obtain the best updated model

to be integrated into the IDS of the companies involved. In this way, intrusion detection

systems are frequently updated with the best machine learning model to increase their

efficiency.

The proposed architecture trains multiple times with several algorithms and, to shorten

the overall runtimes, the proposed architecture was deployed in Fed4FIRE+, a federated

testbed, with Ray to distribute the tasks by the available resources. This implementation

allowed a reduction of the time in the classification between 31% and 33%, and in the

training time of 43%.

i

A set of machine learning algorithms and the proposed architecture were assessed.

When compared with a baseline scenario, the proposed architecture enabled to increase

the accuracy by 11.5% and the precision by 11.2%.

Keywords: Machine Learning. Supervised Learning. Classified Datasets. Voting

System. Multitasking. Distributed. Training Time. IDS.

ii

Resumo

Hoje em dia, um conjunto de serviços estão dispońıveis em rede com vários dados

associados. É essencial garantir a disponibilidade, integridade e confidencialidade de todos

os dados. Contudo, os ataques informáticos são uma grande ameaça. Neste sentido,

um Sistema de Deteção de Intrusão (IDS) é uma ferramenta importante para prevenir

potenciais ameaças a sistemas e dados.

É necessário implementar novos mecanismos com inteligência para defender com su-

cesso a complexidade e inteligência dos ataques, isto é, aumentando a sua eficiência.

Os sistemas de deteção de intrusão baseados em anomalias podem implementar algorit-

mos de machine learning para classificarem eventos como normais ou anómalos e acionar

a resposta adequada. Ao utilizar aprendizagem supervisionada, os algoritmos requerem

conjuntos de dados (datasets) classificados, enriquecidos e recentes. Assim, para fomentar

o desempenho desses modelos de machine learning, conjuntos de dados podem ser criados

em tempo real com registos de diferentes origens numa abordagem colaborativa e treinados

por vários algoritmos.

Este trabalho propõe uma arquitetura baseada num sistema de votação para criar

conjuntos de dados classificados e melhorar o desempenho dos sistemas de deteção de

intrusão baseados em aprendizagem supervisionada. Em tempo real, vários sistemas de

deteção de intrusão em diferentes locais (empresas) enviam os seus registos para um sistema

central que os combina e classifica usando diferentes modelos de machine learning e um

sistema de votação por maioria. Em seguida, cria um novo conjunto de dados classificados

que é treinado para obter o melhor modelo atualizado que será integrado nos sistemas

de deteção de intrusão das diferentes empresas envolvidas. Desta forma, os sistemas de

deteção de intrusão são frequentemente atualizados com o melhor modelo de machine

learning para aumentarem a sua eficiência.

iii

A arquitetura proposta treina várias vezes com vários algoritmos e, para diminuir os

tempos de execução, a arquitetura proposta foi implementada no Fed4FIRE+ com Ray a

gerir a distribuição das tarefas pelos recursos dispońıveis. Esta implementação permitiu

uma redução do tempo na classificação entre 31% e 33%, e no tempo de traino de 43%.

Neste trabalho a arquitetura proposta foi avaliada com vários algoritmos de machine

learning. Quando comparada com um cenário de base (um único sistema de deteção de

intrusão), a arquitetura proposta aumentou a exatidão em 11.5% e a precisão em 11.2%.

Palavras-chave: Aprendizagem Supervisionada. Conjuntos de dados. Classificação.

Sistema de Votos. Multitarefa. Sistema distribúıdo. Tempo de treino. Sistema de Deteção

de Intrusão.

iv

Acknowledgements

The conclusion of this thesis and the arrival at the desired level depended on the

important contribution of countless people and institutions. So, I want to thanks:

To the supervisors Professor Pedro Pinto and Professor Silvestre Malta for their sup-

port, help and total dedication in monitoring the thesis, as well as in the advice provided

in order to complement the requirement involved in it.

To the Instituto Politécnico de Viana do Castelo (IPVC), in particular the Escola

Superior de Tecnologia e Gestão (ESTG) for the opportunity to enter and enrich my

knowledge in the Masters in Cybersecurity.

To the entire group of professors of the masters who have always encouraged me along

my work. Also, thanks to my master’s colleagues and friends for their support.

To my girlfriend who has always accompanied me, understood and encouraged me

throughout this important stage.

To my parents and my family for the values they transmitted to me as well as for the

constant monitoring and encouragement for the success of this work.

And to all those who were directly and indirectly involved in this journey.

v

Contents

List of Figures viii

List of Tables ix

List of Listings xi

List of Abbreviations xii

1 Introduction 1

1.1 Context . 2

1.2 Problem Statement and Motivation . 2

1.3 Objectives . 3

1.4 Contributions . 3

1.5 Organization . 4

2 Background 5

2.1 Intrusion Detection Systems . 5

2.2 Machine Learning . 7

3 Related Work 10

3.1 Intrusion Detection Systems and Machine Learning 10

3.2 Scalable Testbed Platforms and Tasks Ditribution 12

4 The Proposed Architecture 13

5 Validation 21

5.1 Dataset Selection and Preparation . 21

vi

5.2 Machine Learning Algorithms Selection . 25

5.3 Performance Results and Analysis . 33

6 Conclusions 45

References 47

vii

List of Figures

1.1 Envisioned Scenario . 3

2.1 Types of IDSs . 5

2.2 Confusion Matrix . 9

4.1 Overview of the Proposed Architecture . 14

4.2 Detailed operation of the Proposed Architecture 15

4.3 Initial operation of the Proposed Architecture 16

4.4 Unclassified logs collection from companies IDSs 17

4.5 Detail of the Master’s internal procedures 18

4.6 Master’s internal procedures for classification, voting and dataset generation 19

4.7 Training, selection and deployment phases 20

5.1 Proposed Architecture validation scenario 35

5.2 Results of accuracy and precision for the Baseline and the Proposed Archi-

tecture scenarios . 37

5.3 Implementation of the Proposed Architecture using Fed4FIRE+ and Ray . 38

5.4 Results of time to classify subsets in one server and in multiple servers . . . 41

5.5 Results of time to training subsets in one server and in multiple servers . . 44

viii

List of Tables

5.1 Description of each label and number of instances 22

5.2 Description of each select feature . 24

5.3 Results of the accuracy of each algorithm for each subset 26

5.4 Results of the precision of each subset for each tested algorithm 27

5.5 Results of the accuracy of each algorithm for each subset after applying

oversampling . 30

5.6 Results of the precision of each subset after applying oversampling for each

tested algorithm . 31

5.7 Elapsed runtime results for each algorithm and per subset 32

5.8 Elapsed runtime results for each algorithm and per subset after applying

oversampling . 33

5.9 Accuracy and Precision for Sample #0 . 34

5.10 Models used for the Baseline and the Proposed Architecture scenarios . . . 36

5.11 Accuracy results of Baseline and Proposed Architecture scenarios 36

5.12 Precision results of Baseline and Proposed Architecture scenarios 36

5.13 Time to classify records on single server and on multiple servers (Sample #1) 39

5.14 Time to classify records on single server and on multiple servers (Sample #2) 39

5.15 Time to classify records on single server and on multiple servers (Sample #3) 39

5.16 Time to classify records on single server and on multiple servers (Sample #4) 40

5.17 Variation of the time used for classification 40

5.18 Time to train subsets on single server and on multiple servers (Sample #1) 42

5.19 Time to train subsets on single server and on multiple servers (Sample #2) 42

5.20 Time to train subsets on single server and on multiple servers (Sample #3) 42

ix

5.21 Time to train subsets on single server and on multiple servers (Sample #4) 43

5.22 Variation of the time used for training . 43

x

List of Listings

5.1 Script for the Selection of relevant features 23

5.2 Applying SMOTE to balance the dataset 28

xi

List of Abbreviations

ACL Access Control Lists

AI Artificial Intelligence

AUC Area Under Curve

DDoS Distributed Denial of Service

DTC Decision Tree Classifier

FN False Negative

FP False Positive

GENI Global Environment for Network Innovations

GPU Graphic Processing Unit

HIDS Host-Based Intrusion Detection System

IDS Intrusion Detection System

IPS Intrusion Prevention Systems

KNN K-Nearest Neighbors

MCyber Master in Cybersecurity

ML Machine Learning

NIDS Network-based Intrusion Detection System

xii

OSSEC Open Source Host-based Intrusion Detection System

RFC Random Forest Classifier

RL Reinforcement Learning

SAVI Smart Applications on Virtual Infrastructure

SIEM Security Information and Event Management

SL Supervised Learning

SLog Simple Logistics

SMOTE Synthetic Minority Oversampling Technique

SVM Support Vector Machine

TN True Negative

TP True Positive

UL Unsupervised Learning

xiii

Chapter 1

Introduction

The digital transformation provides businesses with a wide range of advantages and

resources, and according to [1], data processed and exchanged in computer and networks

is the most valuable resource. Thus, the digital transformation has also opened new

avenues for criminal activities. Cyberattacks are persistently performed against companies

and institutions and these criminal activities may have different objectives such as to

disrupt services, steal confidential information, or perform extortion [2]. According to a

Accenture report [3], in 2021 there was an increase in the average of attacks per company

of 31% compared to 2020. On the other hand, there is an 82% increase in investment in

cybersecurity compared to 2020.

The complexity and intelligence of attacks evolves and, therefore, defense systems need

to keep the pace to be effective [4]. To prevent or mitigate the impact of these attacks,

several tools and systems can be implemented such as firewalls, Security Information

and Event Management (SIEM), Access Control Lists (ACL), Intrusion Detection System

(IDS), Intrusion Prevention Systems (IPS), among others.

This thesis presents the details of a proposed architecture to improve the performance

of IDS in a collaborative environment. The following sections present the context, the

motivation, the objective, and the contributions resulting from this work.

Page 1 of 54

Chapter 1. Introduction

1.1 Context

An IDS is an important tool for a system administrator to prevent potential threats

to systems and data, as it aims to detect attacks against information systems and protect

these systems against malware and unauthorized access to a network or a system [5]. IDSs

monitor a network or system and their detection method can be classified as signature-

based or anomaly-based IDS.

A signature-based IDS compares the monitored events against a pre-programmed list

of known threats/signatures and their indicators of compromise. An anomaly-based IDS

classifies the events either as normal or anomalous, according to an expected behavior

or pattern. In this method, the detection is triggered when the networks’ or systems’

behavior does not follow the normal behavior or pattern previously defined [6].

The patterns of anomaly-based IDSs can be tested using Machine Learning (ML)

algorithms. ML is a subset of the Artificial Intelligence (AI) area that uses data and

data analysis based on iterative algorithms to learn from this data. The learning process

of these iterative ML algorithms may be supervised, i.e. in Supervised Learning, the

algorithm learns from experience by using labeled datasets to be trained to classify or

predict outcomes accurately.

1.2 Problem Statement and Motivation

The IDSs are an important tool against cyberattacks, and they must be constantly

improving their performance and protection levels. A given company wishing to protect

its networks, devices or services with an anomaly-based IDS may use a supervised learning

algorithm. However, for this algorithm to be effective, it must count on a previously

classified and updated dataset, which is not simple to obtain or create. Classified datasets

already available are not updated regularly and the use of automated tools to classify

a dataset introduces errors and requires, to some extent, human intervention. On the

other hand, a dataset that only contains the company’s own records will not allow the

model or models to learn from different environments, i.e. other companies. Thus, the

effectiveness of these algorithms can be improved if the supervised model uses richer

datasets containing records of different realities in a collaborative approach, and trained

Page 2 of 54

Chapter 1. Introduction

with multiple algorithms.

1.3 Objectives

The main objective of this project is to improve the performance of anomaly-based

IDSs in a collaborative environment. Fig 1.1 presents the envisioned scenario. It assumes

that a centralized architecture collects logs from the IDSs of multiple companies, generates

classified datasets using a vote-based approach, trains and selects the best machine learning

algorithms, and finally deploys the most accurate and updated machine learning model

to each companies’ IDS. Thus, the IDSs of each company will have the best machine

learning models trained with updated records from multiple environments, to increase

their performance to detect attacks on the premises of each company.

Company B

Company A

IDS_A

IDS_B

1 - Collect logs from multiple sources

2 - Generate datasets using a vote-based approach

3 - Train & Select the best ML algorithm

4 - Deploy the best ML model

Company N

IDS_N

Logs

Logs

Logs

ML Model

ML Model

ML Model

Figure 1.1: Envisioned Scenario

1.4 Contributions

This thesis provides a vote-based architecture to generate classified datasets and im-

prove performance of Supervised Learning-based Intrusion Detection Systems. With the

proposed architecture, classified datasets are created in real time by a voting system with

Page 3 of 54

Chapter 1. Introduction

records, i.e. services logs, from different environments (IDSs located in different compa-

nies). The classified datasets are trained by different models to generate new models.

All models are deployed to the voting system and the best model is sent to the IDSs of

companies. The aggregation of recent records from different realities enriches the dataset,

increasing the accuracy and precision of the IDS over time, thus increasing the efficiency

in protecting and preventing attacks.

This work resulted in the following publications:

1. Diogo Teixeira; Silvestre Malta; Pedro Pinto. An Architecture using Ray to

Distribute Tasks in a Federated Testbed Platform to Reduce Machine

Learning Training Time. Abstract - SASYR – 1st Symposium of Applied Science

for Young Researchers, 7 July 2021, online, Portugal. URL: http://hdl.handle.

net/10198/23849

2. Diogo Teixeira; Silvestre Malta; Pedro Pinto. A Vote-Based Architecture to

Generate Classified Datasets and Improve Performance of Intrusion De-

tection Systems Based on Supervised Learning. Future Internet Journal,

2022, 14, 72. https://doi.org/10.3390/fi14030072

1.5 Organization

This document is organized as follows. In Chapter 2 the background concerning this

work is presented. In Chapter 3 the related work is presented. Chapter 4 details the

proposed architecture and its operation. In Chapter 5 presents the dataset selection and

preparation, the machine learning algorithms selection, the validation tests, and the results

and analysis of the proposed architecture. In Chapter 6 the conclusions are presented.

Page 4 of 54

http://hdl.handle.net/10198/23849
http://hdl.handle.net/10198/23849
https://doi.org/10.3390/fi14030072

Chapter 2

Background

This chapter presents an overview of the relevant foundations for the current work,

namely regarding Intrusion Detection Systems and Machine Learning.

2.1 Intrusion Detection Systems

An IDS protects corporations and institutions against cyberattacks by monitoring

multiple events in different agents and triggering alerts or actions [7]. Fig 2.1 presents the

different types of IDSs according to main categories.

Intrusion Detection

System

Data collection method Data analysis techniques

Network-based Anomaly-Based Signature-BasedHost-based

Statistical-based Knowledge-based Machine

Learning-Based

Figure 2.1: Types of IDSs

Regarding data collection method, IDSs can be classified into two different types: the

Page 5 of 54

Chapter 2. Background

Host-Based Intrusion Detection System (HIDS) and Network-based Intrusion Detection

System (NIDS). The HIDS has capabilities of monitoring and analyzing the internals of a

computing system for malicious activity. The NIDS operates in a network where packets

are captured and analyzed to enable the implementation of adequate protective measures.

In [8] it is presented a detailed study of these two types. It is concluded that the best

choice depends on purposes, risks and features.

Regarding the data analysis techniques, IDS can be categorized as signature-based

or anomaly-based. The signature-based IDS is used for known patterns or threats. The

network traffic is scanned to detect attack patterns, in form of signatures, and identify

the intrusion. These IDSs are effective when detecting attack for which it has already a

signature, however, attack variants can be designed to circumvent the detection process

of these IDSs. The anomaly-based IDS uses mechanisms to characterize normal usage

behaviors and recognizes departures from normal as potential intrusions. Thus, it is able

to detect attempts to exploit new and unforeseen vulnerabilities. The Kumar et al. [9]

concluded that the anomaly-based IDSs should be flexible, fast, dynamic to recognize new

patterns and find the reason for false alarms. In [10], a performance evaluation of these

modes is presented. The conclusion presented shows that both methods have limitation

to detect known and unknown attacks. So it is necessary to implement new mechanisms

to increase the effectiveness of IDS.

The anomaly-based IDS can be classified into three different types: Statistical-based,

Knowledge-based, and Machine Learning-Based. The Statistical-based to build the normal

pattern, statistical properties such as mean and variance are used. Thus, the normal

patterns are calculated and a score is assigned to records that deviate from these patterns.

If this score reaches the threshold (based on the number of events over a period of time),

an alarm will be triggered. The Knowledge-based IDSs are used to extract knowledge of

specific system vulnerabilities and attacks. Then intrusions or attacks can be identified

with this knowledge. The machine learning-based IDS is the ability to learn and improve

performance over time. Thus, based on previous results or recently acquired data, with

training, the system can improve its execution.

Page 6 of 54

Chapter 2. Background

2.2 Machine Learning

With AI, systems perceive the environment around them and are capable of learning,

creativity, reasoning and planning to solve a given problem. The ML explores the learning

process of AI. ML refers to the system that has the ability to learn and to build on

that learning to predict results and make decisions. In this sense, with the execution of

algorithms, these systems learn based on the data sets, or previous data, that are presented

to them.

The learning process of machine learning algorithms can be classified as Unsupervised

Learning (UL), Supervised Learning (SL), or Reinforcement Learning (RL). These pro-

cesses can be detailed as follows:

• Supervised Learning:

In this model, a set of classified data are needed. In this way, the algorithm knows

the true classification of the input, and as a result, learns what decisions to make in

the future. The main disadvantage in supervised learning focuses on its low efficiency

when data changes patterns. Thus, it is usually applied to assess risk, forecast sales

and detect SPAM.

• Unsupervised Learning:

The model learns patterns from an unclassified dataset. It focuses on looking for

similarities between inputs for future actions. The great advantage of Unsupervised

Learning is due to the fact that it does not need classified data, that is, it does not

need manual intervention. Thus, with the ability to discover patterns for grouping

data, it is the ideal solution for exploratory data analysis, customer segmentation,

anomaly detection and image recognition.

• Reinforcement Learning:

In Reinforcement Learning, the agent interacts with the environment to make de-

cisions and receive feedback. Thus, if the decision made by the agent is the right

one receives a reward, while if he makes a mistake, he is penalized. In this way, the

greatest reward is always sought, to achieve the goal. With its ability to learn and

Page 7 of 54

Chapter 2. Background

obtain the best possible reward, it is an algorithm widely used in games, self driving

cars and Natural Language Processing (NLP).

There are several machine learning algorithms, and to evaluate the performance of each

one, there are a set of evaluation factors that can be defined as follows:

• True Positive (TP): Number of predicts that model correctly predicts the positive

class.

• True Negative (TN): Number of predicts that model correctly predicts the negative

class.

• False Positive (FP): Number of predicts that model incorrectly predicts the positive

class.

• False Negative (FN): Number of predicts that model incorrectly predicts the negative

class.

These evaluation factors can be used by performance evaluation metrics or classification

metrics that can be defined as follows:

• Precision: The proportion between true positives and the sum of true positives and

false positives, as presented in Equation 2.1.

Precision =
TP

TP + FP
(2.1)

• Accuracy: The ration of the sum of true positives and true negatives to the total

number of classifications, as presented in Equation 2.2.

Accuracy =
TP + TN

TP+ TN+ FP + FN
(2.2)

• Recall: The proportion between true positives and the sum of true positives and

false negatives, as presented in Equation 2.3.

Recall =
TP

TP + FN
(2.3)

Page 8 of 54

Chapter 2. Background

• F1-score: The harmonic mean of precision and recall, as presented in Equation 2.4.

F1-score = 2× Precision× Recall

Precision + Recall
(2.4)

• Confusion Matrix: Distinguishes true positive, false positive, true negative and false

negative predictions, as presented in Fig. 2.2.

TP FP

FN TN

Positive Negative

Po
si
tiv
e

N
eg

at
iv
e

True Class
Pr

ed
ic

te
d

C
la

ss

Figure 2.2: Confusion Matrix

Page 9 of 54

Chapter 3

Related Work

In this chapter is presented a review on related works regarding intrusion detection

systems and machine learning integration, and on related works regarding scalable testbed

platforms and tasks distribution.

3.1 Intrusion Detection Systems and Machine Learning

As cyberattacks are constantly evolving, so IDS must also progress to be efficient

[11]. A set of research works are focused on improving the operation and performance

of the IDS. Authors in [12] propose an architecture to reduce the false alarm rate of the

attack detection. Authors in [13] propose to prevent Distributed Denial of Service (DDoS)

attacks by using the configuration features and rules adjustments of Open Source Host-

based Intrusion Detection System (OSSEC) and describe the operation of an algorithm

used to distinguish real of false DDoS alerts. In order to protect a set of machines, Teixeira

et al. [14] implemented a platform to override false-positives and false-negatives of OSSEC

IDS. The proposed platform is able to apply an override action in multiple agents, saving

human intervention time.

Voting based systems are also a research line that is used to improve the detection

performance of an IDS. Authors in [15] propose an ensemble adaptive voting algorithm.

The results show that the final accuracy is improved with the use of an adaptive voting

algorithm. Panda et al. [16] designed a voting system to detect errors and concluded that

it performs efficiently in terms of high detection rate and low false positive rate. Authors

Page 10 of 54

Chapter 3. Related Work

in [17] and [18] have implemented a voting system that uses probability mechanisms to

define the final classification. Mahfouz et al. [19] propose an ensemble classifier model

that include a voting system to improve detection accuracy and true positive rate, and

decrease the false positive rate. Authors in [20] propose a voting system to decrease false

alarms. The results show that, when compared different deep learning models, false alarms

can be reduced up to 75%.

Machine learning can be used to adapt an IDS to the dynamic and complex nature

of the attacks [21]. According to Haripriya et al. [22], the main objective of applying

machine learning algorithms in an IDS, focuses on obtaining a low false alarm rate and

a high detection rate. As highlighted in [23], using machine learning techniques in an

IDS can reduce the occurrence of false positives. Authors also point that one or more

models should be used to increase the performance of their detection. In [24], Vikram et

al. implement unsupervised learning algorithms in an IDS. The results demonstrate better

efficiency compared to IDS without machine learning, with an Area Under Curve (AUC)

score of 98.3%. In [25], Anthi et al. propose a IDS that uses a supervised approach to

detect a range of popular network based cyberattacks. The performance of the proposal is

greater than 90% and can successfully distinguish between malicious or benign activity. In

[26], authors developed a supervised machine learning system on IDS to classify network

traffic whether it is malicious or benign, with a detection rate of 94.02%. In [27], four

algorithms are compared to implement on IDS and all of them have accuracy greater than

96%. In [28], Rani et al. propose an efficient method with uniform detection system

based on supervised machine learning technique, that obtained an accuracy of 99.9%. In

[29], authors implement a collaborative multi-agent reinforcement learning to make the

detection more efficient. The results are better in comparison with baseline approach.

In [30], Latif et al. proposed a Dense Random Neural Network (DnRaNN) technique to

detect attacks in an IoT environment. The authors obtained an accuracy of 99,14% when

using binary classification and 99,05% when using multiclass scenarios. In [31], Kunal

et al. presented and compared various machine learning methodologies applied in IDS.

Thus, it is demonstrated that the efficiency of the algorithms used will vary according to

the final objective. To the best of our knowledge, none of the works presented previously

proposed a vote-based architecture of multiple IDS to generate new datasets and improve

Page 11 of 54

Chapter 3. Related Work

their performance in a collaborative approach.

3.2 Scalable Testbed Platforms and Tasks Ditribution

The implementation of machine learning algorithms requires time and resources to

train. As highlighted by Mo et al. [32], a long training time can add significant costs. The

authors in [33] highlights that the process of building and deploying Machine Learning

models includes several phases and the training phase is taken as one of the most time-

consuming. Authors in [34] refer that long training running time of the models leads to the

use of distributed systems for an increase of parallelization and total amount of I/O band-

width. Thus, in this context it can be considered the use of federated testbed platforms.

These platforms enable the implementation, validation, and testing architectures in a scal-

able environment. In particular testbeds such as Fed4FIRE+ [35], Global Environment

for Network Innovations (GENI) [36] and Smart Applications on Virtual Infrastructure

(SAVI) [37] can be considered, as these platforms have a large system capacity and a rich

set of experimentation services.

To distribute tasks and enable parallel processing, multiple tools can be used. Authors

in [38] surveyed and tested the following open source python-based libraries for parallel

processing: Ray [39], Ipyparallel [40], Dispy [41], Pandaral-lel [42], Dask [43], Joblib [44].

Authors in [45] created a distributed framework that uses Ray to manage millions of tasks

simultaneously. The proposed framework is claimed to offer programming flexibility, high

throughput, and low latencies. In [46], Dispy is used to manage distributing parallel tasks

among several computer nodes to decrease the execution time of specific tasks.

Page 12 of 54

Chapter 4

The Proposed Architecture

The proposed architecture is presented in Fig. 4.1. The IDSs located in a set of

companies send their updated records, i.e. service logs (1), to a central system (Master)

which applies them to multiple models, based on different algorithms. Each model classifies

the record as an attack or not an attack and then, the classifications of records per model

are sent to a voting system to have the final classification of records and generate a new

and classified dataset. The updated datasets are trained to obtain an updated model to

be integrated into the IDS of the companies involved (2). All steps are carried out in a

regular basis and each company sends a set of log records and receives a new model to

improve IDS performance.

Page 13 of 54

Chapter 4. The Proposed Architecture

Company B

Company A

IDS_A

IDS_B

Master
Vote,

Train,

Select &

Deploy

Company N

IDS_N

Logs

(1)

Logs

(1)

Logs

(1)

Model ML

(2)

Model ML

(2)

Model ML

(2)

Figure 4.1: Overview of the Proposed Architecture

The detailed operation is presented in Fig. 4.2. The proposed architecture assumes

that in a set of companies there is an IDS collecting unlabelled service logs from multiple

agents of different service types (e.g. FTP, MySQL, HTTP). These logs are sent in real

time for a master system (1). The logs are sent to classifiers (2) that classify the logs

(with a binary classification: ”attack” or ”ok”) using different machine learning models.

These classified logs are sent to the master (3), where a voting system classifies each record

according to the majority. Then, it is created a new dataset categorized by service type,

and these new datasets are sent to the trainers (4) to be trained by different algorithms.

A new machine learning model is generated for each training (5) and the best model is

deployed on the IDS of companies (6).

Page 14 of 54

Chapter 4. The Proposed Architecture

Classifiers Trainers

Model ML

(6)

Master

Company A

IDS_A

Agent_A1
FTP

Agent_A2
MySQL

Agent_A3
HTTP

 Company B

IDS_B
 Agent_B1

SNMP
 Agent_B2

DNS

 Agent_B3

HTTP

 Agent_B4

FTP

ClassifierA

Model_A

ClassifierB

Model_B

ClassifierC

Model_C

Logs

(1)

Trainer03Trainer02Trainer01

IDS_N

 Company N

 Agent_N

Logs

(1)

TrainerN

Dataset

(4)

Model ML

(6)

Logs

(1)

Model ML

(6)

Vote,

Train,

Select &

Deploy

...
Model

(5)

Classification

(3) Classification

(3)

Classification

(3)

Dataset

(4)

Model

(5)

Dataset

(4)Model

(5)

Log

(2)

Log

(2)

Log

(2)

Figure 4.2: Detailed operation of the Proposed Architecture

The operation of the Master assumes a set of classifiers and trainers, whose number

can be adjusted according to the need. The records obtained from multiple companies

and constant learning will allow the different agents of the companies to improve the

performance of detection operation. At same time, the service logs of each company are

not known by other companies, which guarantees the privacy and industrial secrecy of

their data.

In the first iteration for a given service, the architecture has no previously generated

dataset and thus, it comprehends an initial operation with a previously categorized dataset.

This initial operation is depicted in Fig. 4.3. An external and categorized dataset (e.g.

CICDDoS2019) is sent to the master for the first training (1). This dataset is sent to be

trained by different algorithms in Trainers (2). The different machine learning models are

generated according to the multiple services. Then, the generated models are deployed

Page 15 of 54

Chapter 4. The Proposed Architecture

into Classifiers (3). The master compares the different models and the one with the best

accuracy and precision is sent to the companies’ IDS (4).

Classifiers Trainers

Deploy All
Models (3)

Master

Classified Logs

(1)

ClassifierA

Model_A

ClassiferB

Model_B

ClassifierC

Model_C

Trainer03Trainer02Trainer01

Deploy

Best Model

(4)

Train,

Select &

Deploy

Training

(2)

Company B

Company A

IDS_A

IDS_B

Dataset

Categorized

(e.g. CICDDoS2019)

Figure 4.3: Initial operation of the Proposed Architecture

After the first iteration, the proposed architecture is ready to operate in a regular

basis. The companies start by collecting the service logs and sending them to the master.

Fig. 4.4 details the process of Logs Collection from the IDSs of the companies. In each

company, a set of agents produces their service logs; each agent may produce logs for a

specific service (e.g. FTP, MySQL, etc). These logs are sent to the IDS of the company,

which is composed of multiple anomaly-based IDS using machine learning, with a model

for each service type. These models classify each service logs according to the machine

learning model in this IDS, and may provide an action against an event (such as to block

detected attacks). At the same time, an unclassified version of these logs is sent to the

Page 16 of 54

Chapter 4. The Proposed Architecture

master to generate an enriched dataset and provide an updated model.

Company A

IDS_A

Agent_A1
FTP

Agent_A2
MySQL

[FTP] Login Failed 10.10.10.10

[FTP] Login Failed 10.10.10.20

[FTP] Login OK 10.10.10.30

[FTP] Login Failed 10.10.10.40

[MySQL] Login Ok 10.20.20.10

[MySQL] Login Failed 10.20.20.20

[MySQL] Login OK 10.20.20.30

[MySQL] Login OK 10.20.20.40

Agent Logs
[FTP] Login Failed 10.10.10.10

[MySQL] Login Ok 10.20.20.10

[FTP] Login Failed 10.10.10.20

[FTP] Login OK 10.10.10.30

[FTP] Login Failed 10.10.10.40

[MySQL] Login Failed 10.20.20.20

[MySQL] Login OK 10.20.20.30

[MySQL] Login OK 10.20.20.40

 Company B

IDS_B

 Agent_B1

SNMP

 Agent_B2

FTP

[FTP] Login OK 10.100.100.10

[FTP] Login OK 10.100.100.20

[FTP] Login OK 10.100.100.30

[FTP] Login Failed 10.100.100.40

[SNMP] SASL LOGIN failed 10.70.70.10

[SNMP] SASL LOGIN failed 10.70.70.20

[SNMP] SASL LOGIN OK 10.70.70.30

[SNMP] SASL LOGIN failed 10.70.70.40

Agent Logs
[SNMP] SASL LOGIN failed 10.70.70.10

[FTP] Login OK 10.100.100.10

[FTP] Login OK 10.100.100.20

[FTP] Login OK 10.100.100.30

[SNMP] SASL LOGIN failed 10.70.70.20

[SNMP] SASL LOGIN OK 10.70.70.30

[SNMP] SASL LOGIN failed 10.70.70.40

[FTP] Login Failed 10.100.100.40

===

===

===

===

===

===

===

===

Classification

Attack-SNMP
OK-FTP

Attack-FTP
OK-FTP

Attack-SNMP
OK-SNMP
OK-SNMP
Attack-FTP

Classification
Attack-FTP
OK-Mysql

Attack-FTP
OK-FTP

Attack-FTP
Attack-Mysql

OK-Mysql

Attack-Mysql

===

===

===

===

===

===

===

===

Logs

(1)

Logs

(1)

Master
Vote,

Train,

Select &

Deploy

Collected Logs
[FTP] Login Failed 10.10.10.10

[MySQL] Login Ok 10.20.20.10

[FTP] Login Failed 10.10.10.20

[FTP] Login OK 10.10.10.30

[FTP] Login Failed 10.10.10.40

[MySQL] Login Failed 10.20.20.20

[MySQL] Login OK 10.20.20.30

[MySQL] Login OK 10.20.20.40

Collected Logs
[SNMP] SASL LOGIN failed 10.70.70.10

[FTP] Login OK 10.100.100.10

[FTP] Login OK 10.100.100.20

[FTP] Login OK 10.100.100.30

[SNMP] SASL LOGIN failed 10.70.70.20

[SNMP] SASL LOGIN OK 10.70.70.30

[SNMP] SASL LOGIN failed 10.70.70.40

[FTP] Login Failed 10.100.100.40

Figure 4.4: Unclassified logs collection from companies IDSs

These unclassified logs are then received by the Master, and its internal procedures

are depicted in Fig. 4.5. When the master receives the unclassified logs from the IDS of

the companies (1), it uses a Classification Orchestrator to distribute the service logs by

the Classifiers (2) (i.e. Classifier A, B, etc). Each Classifier has the different machine

learning models generated in the previous training for each service. The received logs are

categorized by the different models of the respective service, where each model sends the

classified log to the Majority Voting System (3). With an odd number of classifications,

the Majority Voting System outputs the logs with a classification voted by the majority

(4). The winning classified logs are sent to a Dataset Assembler, generating a dataset

categorized by service. When the dataset reaches a defined limit (e.g. more than 100

thousand classified records), the Training Orchestrator sends the generated dataset to a

set of Trainers (5) (i.e. Trainer 1, 2, etc). In each Trainer, the dataset is trained using

Page 17 of 54

Chapter 4. The Proposed Architecture

a different algorithm generating the respective models (6), which are then sent to the

Collector. The Collector replaces the models in the Classifiers with the new generated

models (7) and compares the models to send to the IDS of companies the one with the

best accuracy and precision (8).

Company B

TrainersClassifiers

Master

Majority

Voting System

Dataset

Assembler

Classifier A

Model_A

Classifier B

Model_B

Classifier C

Model_C

Log

(2)

Log

(2)

Classification

orchestrator

Log

(2)

Winning

Classified Log (4)

Trainer01

(Alg A)

Trainer02

(Alg B)

Trainer03

(Alg C)

Dataset

(5)

Training

orchestrator

Model_C

(6)

Model_B

(6)

Model_A

(6)Replace

Model_C

(7)

Replace

Model_B

(7)

Replace

Model_A

(7)

Company A

IDS_A

IDS_B

Unclassified

Logs

(1)

Deploy Best
Model

(8)

Per-Model

Classified

Logs

(3)

Collector

&

Comparator

Figure 4.5: Detail of the Master’s internal procedures

The Master’s internal procedures for classification, voting and dataset generation are

depicted in Fig. 4.6. The Master sends the multiple logs received from the companies to

the Classifiers (2) to be categorized by different algorithms. The machine learning models

classify the logs based on the training and the respective classification of each model is sent

to the Majority Voting System (3), that will output these logs classified by the majority.

Then, the winning logs are sent (4) to a Data Assembler, where a classified dataset with

recent logs is generated. After generating the Dataset, the master requests a new training

Page 18 of 54

Chapter 4. The Proposed Architecture

of the machine learning models (5) with the generated dataset. The models are then sent

to the Collector and Comparator (6), and it replaces models in the Classifiers (7) and

deploys the best models (8) in the IDS of the companies.

Majority Voting System

Dataset Assembler

ClassifierA

Model_A

ClassifierB

Model_B

ClassifierC

Model_C

Logs Company A

[FTP] Login Failed 10.10.10.10

[MySQL] Login Ok 10.20.20.10

[FTP] Login Failed 10.10.10.20

[FTP] Login OK 10.10.10.30

[FTP] Login Failed 10.10.10.40

[MySQL] Login Failed 10.20.20.20

[MySQL] Login OK 10.20.20.30

[MySQL] Login OK 10.20.20.40

Classification of ClassifierA
[FTP] Login Failed 10.10.10.10 Attack-FTP

[MySQL] Login Ok 10.20.20.10 OK-Mysql

[FTP] Login Failed 10.10.10.20 Attack-FTP

[FTP] Login OK 10.10.10.30 OK-FTP

[FTP] Login Failed 10.10.10.40 Attack-FTP

[FTP] Login OK 10.100.100.10 OK-FTP

[FTP] Login OK 10.100.100.20 Attack-FTP

[MySQL] Login Failed 10.20.20.20 Attack-Mysql

[MySQL] Login OK 10.20.20.30 OK-Mysql

[MySQL] Login OK 10.20.20.40 Attack-Mysql

[FTP] Login OK 10.100.100.30 OK-FTP

[FTP] Login Failed 10.100.100.40 Attack-FTP

...

Classification of ClassifierB
[FTP] Login Failed 10.10.10.10 OK-FTP

[MySQL] Login Ok 10.20.20.10 Attack-Mysql

[FTP] Login Failed 10.10.10.20 Attack-FTP

[FTP] Login OK 10.10.10.30 OK-FTP

[FTP] Login Failed 10.10.10.40 Attack-FTP

[FTP] Login OK 10.100.100.10 OK-FTP

[FTP] Login OK 10.100.100.20 OK-FTP

[MySQL] Login Failed 10.20.20.20 Attack-Mysql

[MySQL] Login OK 10.20.20.30 OK-Mysql

[MySQL] Login OK 10.20.20.40 OK-Mysql

[FTP] Login OK 10.100.100.30 OK-FTP

[FTP] Login Failed 10.100.100.40 Attack-FTP

...

Classification of ClassifierC
[FTP] Login Failed 10.10.10.10 Attack-FTP

[MySQL] Login Ok 10.20.20.10 OK-Mysql

[FTP] Login Failed 10.10.10.20 Attack-FTP

[FTP] Login OK 10.10.10.30 OK-FTP

[FTP] Login Failed 10.10.10.40 Attack-FTP

[FTP] Login OK 10.100.100.10 Attack-FTP

[FTP] Login OK 10.100.100.20 OK-FTP

[MySQL] Login Failed 10.20.20.20 OK-Mysql

[MySQL] Login OK 10.20.20.30 OK-Mysql

[MySQL] Login OK 10.20.20.40 OK-Mysql

[FTP] Login OK 10.100.100.30 OK-FTP

[FTP] Login Failed 10.100.100.40 Attack-FTP

...

Classified Dataset - dataset_voteFTP
[FTP] Login Failed 10.10.10.10 Attack-FTP

[FTP] Login Failed 10.10.10.20 Attack-FTP

[FTP] Login OK 10.10.10.30 OK-FTP

[FTP] Login Failed 10.10.10.40 Attack-FTP

[FTP] Login OK 10.100.100.10 OK-FTP

[FTP] Login OK 10.100.100.20 OK-FTP

[FTP] Login OK 10.100.100.30 OK-FTP

[FTP] Login Failed 10.100.100.40 Attack-FTP

...

(2)(2)(2)

(3)
(3)(3)

Logs Company B

[SNMP] SASL LOGIN failed 10.70.70.10

[FTP] Login OK 10.100.100.10

[FTP] Login OK 10.100.100.20

[FTP] Login OK 10.100.100.30

[SNMP] SASL LOGIN failed 10.70.70.20

[SNMP] SASL LOGIN OK 10.70.70.30

[SNMP] SASL LOGIN failed 10.70.70.40

[FTP] Login Failed 10.100.100.40

All classifications
[FTP] Login Failed 10.10.10.10 Attack-FTP OK-FTP Attack-FTP

[MySQL] Login Ok 10.20.20.10 OK-Mysql Attack-Mysql OK-Mysql

[FTP] Login Failed 10.10.10.20 Attack-FTP Attack-FTP Attack-FTP

[FTP] Login OK 10.10.10.30 OK-FTP OK-FTP OK-FTP

[FTP] Login Failed 10.10.10.40 Attack-FTP Attack-FTP Attack-FTP

[FTP] Login OK 10.100.100.10 OK-FTP OK-FTP Attack-FTP

[FTP] Login OK 10.100.100.20 Attack-FTP OK-FTP OK-FTP

[MySQL] Login Failed 10.20.20.20 Attack-Mysql Attack-Mysql OK-Mysql

[MySQL] Login OK 10.20.20.30 OK-Mysql OK-Mysql OK-Mysql

[MySQL] Login OK 10.20.20.40 Attack-Mysql OK-Mysql OK-Mysql

[FTP] Login OK 10.100.100.30 OK-FTP OK-FTP OK-FTP

[FTP] Login Failed 10.100.100.40 Attack-FTP Attack-FTP Attack-FTP

...

Classified Dataset - dataset_voteMySQL
[MySQL] Login Ok 10.20.20.10 OK-Mysql

[MySQL] Login Failed 10.20.20.20 Attack-Mysql

[MySQL] Login OK 10.20.20.30 OK-Mysql

[MySQL] Login OK 10.20.20.40 OK-Mysql

...

(4)

Master
Vote,

Train,

Select &

Deploy

Figure 4.6: Master’s internal procedures for classification, voting and dataset generation

In particular, the training, selection and deployment stages comprehend 3 phases,

depicted in Fig. 4.7. In phase 1 the new classified dataset is trained by different algorithms

Page 19 of 54

Chapter 4. The Proposed Architecture

in the Trainers to generate new machine learning models. In phase 2, the new models

are deployed in the Classifiers. The new machine learning models will be used in the

voting system that classifies the most recent records received from the companies as shown

previously in Fig. 4.6. Finally, in phase 3, the model with better accuracy and precision

is sent to the IDS of companies, to increase their performance in detecting attacks.

Phase 1
Phase 2

Phase 3

Trainer01 Trainer02 Trainer03

ClassifierC

Model_C

ClassifierB

Model_B

ClassifierA

Model_A Training of

dataset_voteFTP

with

 algorithm A

Training of
dataset_voteFTP

with

algorithm B

Training of
dataset_voteFTP

with

algorithm C

Classified Dataset - dataset_voteFTP
[FTP] Login Failed 10.10.10.10 Attack-FTP

[FTP] Login Failed 10.10.10.20 Attack-FTP

[FTP] Login OK 10.10.10.30 OK-FTP

[FTP] Login Failed 10.10.10.40 Attack-FTP

[FTP] Login OK 10.100.100.10 OK-FTP

[FTP] Login OK 10.100.100.20 OK-FTP

[FTP] Login OK 10.100.100.30 OK-FTP

[FTP] Login Failed 10.100.100.40 Attack-FTP

...

Master
Vote,

Train,

Select &

Deploy

Company B

Company A

IDS_A

IDS_B

Figure 4.7: Training, selection and deployment phases

The proposed architecture assumes the regular training of different machine learning

models, which is a time and resource consuming task. In order to be implemented, scalable

testbeds and parallel processing tools can be used.

Page 20 of 54

Chapter 5

Validation

This chapter details the validation stage of the proposed architecture. The validation

stage starts by selecting and preparing a dataset. Then, tests were performed to select

the three best algorithms to be implement in the proposed architecture. Finally, the

performance of the proposed architecture was tested with four iterations. These stages

are detailed in the following sections.

5.1 Dataset Selection and Preparation

The Supervised learning algorithms need categorized datasets. The works developed

that add supervised learning algorithms to a IDS mainly use three datasets: KDD’99

[47], NSL-KDD [48], UNSW-NB15 [49], and CICDDoS2019 dataset [50]. These datasets

were built with records from 1999, 2009, 2015, and 2019, respectively. With the constant

evolution of attacks, for efficient protection against them, it is essential to use datasets

with real and recent records and thus, the CICDDoS2019, a dataset provided by the

Canadian Institute for Cybersecurity, University of New Brunswick, Canada, was selected

and analysed in detail to validate the proposed architecture.

The CICDDoS2019 dataset features 50 million records from 2019, distributed by 14

different labels, as presented in Table 5.1. The records in this dataset relate to benign

traffic and recent DDoS attacks on various services (NTP, LDAP, SSDP, FTP, MSSQL,

DNS, among others). The main focus of this thesis is to create an architecture where

IDSs are efficient in protecting their agents. Thus, the use of this dataset allows machine

Page 21 of 54

Chapter 5. Validation

learning algorithms to train with records of attacks on various services, increasing the

knowledge of the model for situations similar to those present in the dataset.

Table 5.1: Description of each label and number of instances

Attribute

(Class Label)

Description Instances

Number

DDoS WebDDoS Send multiple requests to the attacked web resource

with the aim of exceeding the website’s resource [51]

439

Benign Legitimate traffic 56 863

DDoS Portmap An attack on TCP or UDP port 111 which is a

service used to direct clients to the proper port

number so they can communicate with the requested

Remote Procedure Call (RPC) service [52]

186 960

DDoS UDP-Lag Attempts to break the client-server connection [53] 366 461

DDoS NTP Pool of unidentified UDP network packets sent to

NTP servers [54]

1 202 642

DDoS SYN SYN flood attack is to consume all resources by

sending huge amount of data or a large number of

SYN requests packets [55]

1 582 289

DDoS LDAP Exploit web-based applications that construct

LDAP statements based on user inputs [56]

2 179 930

DDoS SSDP An attack that an enormous amount of traffic are

generated to exploiting the UPnP protocol [57]

2 610 611

DDoS UDP UDP packets are sent to a victim to slow down or go

down its resources [58]

3 134 645

DDoS NetBIOS An attack that uses the NetBIOS service [59] 4 093 279

DDoS MSSQL Execute malicious SQL statements [60] 4 522 492

DDoS DNS Exploit the vulnerabilities in the DNS [61] 5 071 011

DDoS SNMP Sends a large number of requests with spoofed IP

address to several devices [62]

5 159 870

DDoS TFTP A amplification DDoS attack based on TFTP [63] 20 082 580

Page 22 of 54

Chapter 5. Validation

The proposed architecture was evaluated in a set of validation tests, using the CICD-

DoS2019 dataset. To prepare this dataset to be used, a feature selection was made based

on the most important features. This selection used the Extra Trees Classifier class from

scikit-learn as presented in Listing 5.1.

1 {

2 from sk l e a rn . ensemble import Ext r aT r e e sC l a s s i f i e r

3 import numpy as np

4

5 df = pd . r ead c sv (datase t)

6 y = df [’ Label ’]

7 x = df . drop (’ Label ’ , a x i s=1)

8

9 e x t r a t r e e f o r e s t = Ex t r aT r e e sC l a s s i f i e r (n e s t imato r s =1000 ,

c r i t e r i o n=’ entropy ’ , max features=’ auto ’)

10 e x t r a t r e e f o r e s t . f i t (x , y)

11

12 f ea tu re impor tance = e x t r a t r e e f o r e s t . f e a tu r e impo r t anc e s

13 f ea tu r e impor tance norma l i z ed = np . std ([t r e e . f e a tu r e impo r t anc e s

for t r e e in e x t r a t r e e f o r e s t . e s t ima to r s] , a x i s=0)

14

15 index = np . a r g s o r t (f ea tu re impor tance) [: : − 1]

16 }

Listing 5.1: Script for the Selection of relevant features

As result, the features with importance greater than 2.5% were considered and selected.

Table 5.2 presents a brief description of each of 23 selected features.

Page 23 of 54

Chapter 5. Validation

Table 5.2: Description of each select feature

Feature Description

Source IP IP address from which packets were sent

Source Port Port from which packets were sent

Destination IP Address IP to receive packets

Protocol Protocol for data transmission

Timestamp Time of transmission

Fwd Packet Length Max Maximum size of packet in forward direction

Fwd Packet Length Min Minimum size of packet in forward direction

Fwd Packet Length Mean Mean size of packet in forward direction

Bwd Packet Length Min Minimum size of packet in backward direction

Flow Bytes/s Number of flow bytes per second

Flow Packets/s Minimum length of a packet

Min Packet Length Minimum length of a packet

Max Packet Length Maximum length of a packet

Packet Length Mean Mean length of a packet

ACK Flag Count Number of packets with ACK

URG Flag Count Number of packets with URG

CWE Flag Count Number of packets with CWE

Down/Up Ratio Download and upload ratio

Average Packet Size Average size of packet

Avg Fwd Segment Size Average size observed in the forward direction

Avg Bwd Segment Size
Average number of bytes bulk rate

in the forward direction

Init Wing bytes forward
The total number of bytes sent in initial

window in the forward direction

Inbound Traffic originates from outside the network

Page 24 of 54

Chapter 5. Validation

5.2 Machine Learning Algorithms Selection

After selecting the features with most importance, a selection of the machine algo-

rithms that will train the dataset, in the trainers, was performed. The goal is to have an

odd-numbered set of trainers each with a machine learning algorithm and, for the current

validation tests, three algorithms needed to be selected. The best three algorithms were

selected from the following range: Decision Tree Classifier (DTC), Random Forest Clas-

sifier (RFC), K-Nearest Neighbors (KNN), Simple Logistics (SLog), and Support Vector

Machine (SVM).

These five algorithms were compared in terms of accuracy, precision and execution

time when using the following subsets of records from the CICDDoS2019 dataset:

• Subset A - collected using 191 694 records (186 960 DDoS Portmap and 4734 Be-

nign);

• Subset B - collected using 300 661 records (287 873 DDoS NTP and 12 788 Benign);

• Subset C - collected using 395 572 records (395 415 DDoS Syn and 157 Benign);

• Subset D - collected using 544 983 records (544 647 DDoS LDAP and 336 Benign);

• Subset E - collected using 652 652 records (652 394 DDoS SSDP and 258 Benign);

• Subset F - collected using 783 661 records (782 590 DDoS UDP and 1071 Benign);

• Subset G - collected using 1 023 320 records (1 022 456 DDoS NetBIOS and 864

Benign);

• Subset H - collected using 1 130 623 records (1 129 604 DDoS MSSQL and 1019

Benign);

• Subset I - collected using 1 267 750 records (1 265 727 DDoS DNS and 2023 Benign);

• Subset J - collected using 1 298 968 records (1 289 043 records DDoS SNMP and

925 Benign);

• Subset K - collected using 3 012 387 records (3 010 540 DDoS TFTP and 1847

Benign);

Page 25 of 54

Chapter 5. Validation

• Subset Z - collected using 1 059 153 records (125 032 DDoS DNS, 54 490 DDoS LDAP,

112 410 DDoS MSSQL, 17 740 DDoS NTP, 128 951 DDoS SNMP, 65 155 DDoS SSDP,

300 367 DDoS TFTP, 77 466 DDoS UDP, 14 280 Portmap, 101 756 DDoS NetBIOS

and 21 955 Benign). Although this subset contains records from several datasets and

therefore has multi classification, it was adjusted to also have binary classification

(Attack, Benign).

Table 5.3 presents the accuracy obtained by each algorithm for each subset. From

the results obtained, it can be verified that the subsets with records by service (subsets

A to K) presented an accuracy ranging from 90% to 96%. In turn, the results of subset

Z (records of multi services) presented a lower accuracy ranging from 79% to 81%. The

accuracy results show that the best three algorithms are the Simple Logistics, the Decision

Tree Classifier, and the Random Forest Classifier.

Table 5.3: Results of the accuracy of each algorithm for each subset

Accuracy (%)

SLog DTC RFC KNN SVM

Subset A 93.78 94.78 93.32 92.61 92.15

Subset B 94.48 91.73 92.54 92.31 92.08

Subset C 92.53 92.39 92.28 90.67 91.89

Subset D 92.28 93.88 92.05 91.16 90.12

Subset E 94.24 93.29 93.85 92.64 93.03

Subset F 93.23 95.74 94.63 92.39 91.75

Subset G 93.28 91.69 92.42 90.33 90.77

Subset H 92.39 92.16 91.89 91.04 90.35

Subset I 92.57 91.31 92.53 90.71 90.14

Subset J 94.32 94.86 95.23 93.45 92.79

Subset K 94.03 93.29 93.14 92.04 91.88

Subset Z 80.93 80.56 81.26 79.27 80.19

Average 92.34 92.14 92.10 90.72 90.60

Page 26 of 54

Chapter 5. Validation

Table 5.4 presents the precision for each algorithm for each subset. From the results

obtained, it can be verified that the subsets with records by service (subsets A to K)

presented a precision ranging from 88% to 93%. In turn, the results of subset Z (records

of multi services) presented a precision ranging from 80% to 82%. The precision results

show that the best three algorithms are the Random Forest Classifier, the Decision Tree

Classifier, and the Simple Logistics.

Table 5.4: Results of the precision of each subset for each tested algorithm

Precision (%)

RFC DTC SLog KNN SVM

Subset A 92.04 91.89 91.72 90.38 90.14

Subset B 91.83 92.04 91.23 90.01 89.88

Subset C 92.36 91.99 91.00 89.35 89.83

Subset D 92.28 91.82 91.23 90.04 90.32

Subset E 91.76 91.35 91.28 88.36 89.63

Subset F 92.48 92.36 92.01 90.13 89.32

Subset G 91.82 91.75 90.83 89.33 88.64

Subset H 92.86 91.38 91.14 90.37 89.82

Subset I 91.42 90.53 90.86 88.63 88.93

Subset J 92.43 91.83 91.07 89.77 90.04

Subset K 92.83 92.12 91.78 90.42 90.00

Subset Z 81.75 80.54 80.35 79.79 80.04

Average 91.32 90.80 90.38 88.88 88.88

From the results presented in Table 5.3 and Table 5.4, it is observed that the highest

values regarding accuracy and precision were obtained for the datasets with records per

service (Subset A to K).

To balance the subsets and test the algorithms with balanced subsets oversampling

techniques were applied. For this, the imbalanced-learn library from scikit-learn was

chosen, using the Synthetic Minority Oversampling Technique (SMOTE) method with the

minority argument to resample only the minority class and with the seed at 7. SMOTE

Page 27 of 54

Chapter 5. Validation

is a statistical technique for increasing the number of instances in a dataset such that all

class labels have the same number of instances, as presented in Listing 5.2.

1 {

2 from imblearn . over sampl ing import SMOTE

3

4 sm = SMOTE(samp l ing s t ra t egy=’ minor i ty ’ , random state=7)

5 }

Listing 5.2: Applying SMOTE to balance the dataset

The five algorithms previously mentioned were compared in terms of accuracy, preci-

sion and execution time using the new subsets:

• Subset A Over - Oversampling over minority class was applied to Subset A and

result a balanced dataset with 373 920 records (186 960 DDoS Portmap and 186 960

Benign);

• Subset B Over - Oversampling over minority class was applied to Subset B and result

a balanced dataset with 575 746 records (287 873 DDoS NTP and 287 873 Benign);

• Subset C Over - Oversampling over minority class was applied to Subset C and result

a balanced dataset with 790 83 records (395 415 DDoS Syn and 395 415 Benign);

• Subset D Over - Oversampling over minority class was applied to Subset D and

result a balanced dataset with 1 089 294 records (544 647 DDoS LDAP and 544 647

Benign);

• Subset E Over - Oversampling over minority class was applied to Subset E and

result a balanced dataset with 1 304 788 records (652 394 DDoS SSDP and 652 394

Benign);

• Subset F Over - Oversampling over minority class was applied to Subset F and result

a balanced dataset with 1 565 180 records (782 590 DDoS UDP and 782 590 Benign);

• Subset G Over - Oversampling over minority class was applied to Subset G and

result a balanced dataset with 2 044 912 records (1 022 456 DDoS NetBIOS and 1

022 456 Benign);

Page 28 of 54

Chapter 5. Validation

• Subset H Over - Oversampling over minority class was applied to Subset H and

result a balanced dataset with 2 259 208 records (1 129 604 DDoS MSSQL and 1

129 604 Benign);

• Subset I Over - Oversampling over minority class was applied to Subset I and result

a balanced dataset with 2 531 454 records (1 265 727 DDoS DNS and 1 265 727

Benign);

• Subset J Over - Oversampling over minority class was applied to Subset J and result

a balanced dataset with 2 578 086 records (1 289 043 DDoS SNMP and 1 289 043

Benign);

• Subset K Over - Oversampling over minority class was applied to Subset K and

result a balanced dataset with 6 021 080 records (3 010 540 DDoS TFTP and 3 010

540 Benign);

• Subset Z Over - Oversampling over minority class was applied to Subset Z and result

a balanced dataset with 2 074 396 records (1 037 198 Attack and 1 037 198 Benign);

Table 5.5 presents the accuracy in percentage obtained by each algorithm for each

subset after applying oversampling. From the results obtained, it can be verified that

the subsets with records by service (subsets A Over to K Over) presented an accuracy

ranging from 89% to 94%. In turn, the results of subset Z Over (records of multi services)

presented a lower accuracy ranging from 78% to 82%. The accuracy results show that

the best three algorithms are the Random Forest Classifier, the Simple Logistics, and the

Decision Tree Classifier.

Page 29 of 54

Chapter 5. Validation

Table 5.5: Results of the accuracy of each algorithm for each subset after applying over-
sampling

Accuracy (%)

RFC SLog DTC KNN SVM

Subset A Over 93.25 92.38 91.48 91.87 88.83

Subset B Over 92.33 92.04 91.75 90.03 89.49

Subset C Over 91.37 91.79 91.88 89.95 88.32

Subset D Over 92.85 90.57 92.43 90.99 89.43

Subset E Over 94.08 93.08 91.88 91.23 90.34

Subset F Over 91.54 91.16 91.22 90.91 86.12

Subset G Over 91.28 90.86 91.31 90.04 88.33

Subset H Over 92.38 91.32 91.07 89.58 87.26

Subset I Over 91.33 90.52 90.95 88.78 86.77

Subset J Over 92.93 91.27 92.51 92.57 91.34

Subset K Over 91.80 91.73 90.01 89.52 88.36

Subset Z Over 81.73 80.78 80.28 78.68 79.32

Average 91.41 90.63 90.56 89.51 87.83

Table 5.6 presents the precision in percentage for each algorithm for each subset. From

the results obtained, it can be verified that the subsets with records by service (subsets

A Over to K Over) presented a precision ranging from 88% to 93%. In turn, the results

of subset Z Over (records of multi services) presented a precision ranging from 78% to

81%. The precision results show that the best three algorithms are the Random Forest

Classifier, the Decision Tree Classifier, and the Simple Logistics.

Page 30 of 54

Chapter 5. Validation

Table 5.6: Results of the precision of each subset after applying oversampling for each
tested algorithm

Precision (%)

RFC DTC SLog KNN SVM

Subset A Over 91.96 90.31 91.36 90.93 90.19

Subset B Over 91.04 91.22 90.12 89.82 89.06

Subset C Over 91.43 91.10 90.36 90.17 89.36

Subset D Over 92.01 91.72 91.27 90.34 90.48

Subset E Over 91.19 91.28 90.99 89.43 88.56

Subset F Over 91.46 91.88 91.45 89.52 88.04

Subset G Over 90.39 90.31 89.88 90.01 89.31

Subset H Over 91.24 90.87 90.33 90.01 88.89

Subset I Over 90.15 91.32 90.85 89.32 87.23

Subset J Over 92.61 92.83 90.78 91.82 90.71

Subset K Over 92.31 90.53 91.82 87.85 89.63

Subset Z Over 80.93 79.81 80.01 78.13 78.99

Average 90.56 90.27 89.94 88.95 88.37

From the results presented in Table 5.5 and Table 5.6, it is observed that the highest

values regarding accuracy and precision were obtained for the datasets with records per

service (Subset A Over to K Over). As verified, both in balanced and unbalanced datasets

the best results were obtained in datasets with records per service.

There was a part of the subset (30%) that was not trained to later test the model cre-

ated. In the end, the model obtained the same accuracy values using the training dataset

part and the test dataset part, demonstrating that there was no overfitting. Underfitting

was resolved naturally by using the most important features.

Table 5.7 presents the elapsed runtime for each algorithm and per subset. Table 5.8

presents the elapsed runtime for each algorithm and per subset, after applying oversam-

pling. To obtain these results, each algorithm and subset was trained using a workstation

featuring an Intel® CoreTM i5-9400 CPU @ 2.90GHz, with 32 GB of RAM. From the re-

sults obtained, the Decision Tree Classifier, the Simple Logistics, and the Random Forest

Page 31 of 54

Chapter 5. Validation

Classifier algorithms trained in a shorter time, in average, than the K-Nearest Neighbors

and Support Vector Machine algorithms.

Table 5.7: Elapsed runtime results for each algorithm and per subset

Elapsed Runtime (s)

DTC SLog RFC KNN SVM

Subset A 1 98 40 97 57

Subset B 1 78 82 431 80

Subset C 1 132 87 270 91

Subset D 1 36 79 816 120

Subset E 2 154 174 1199 170

Subset F 2 211 219 1668 234

Subset G 2 160 205 2779 6721

Subset H 2 416 262 3603 115

Subset I 3 206 358 3862 11278

Subset J 3 199 371 4034 965

Subset K 4 314 935 9208 11591

Subset Z 4 238 472 2988 1834

Average 2.17 186.83 273.67 2579.58 2771.33

Page 32 of 54

Chapter 5. Validation

Table 5.8: Elapsed runtime results for each algorithm and per subset after applying over-
sampling

Elapsed Runtime (s)

DTC SLog RFC KNN SVM

Subset A Over 2 124 161 426 1034

Subset B Over 2 4 361 1600 7043

Subset C Over 3 89 257 927 1764

Subset D Over 3 14 381 3258 7485

Subset E Over 4 12 595 4397 3749

Subset F Over 5 37 782 6333 17919

Subset G Over 8 25 1060 11754 43054

Subset H Over 14 15 1236 12978 29151

Subset I Over 14 25 1347 16983 26343

Subset J Over 16 18 1489 19069 47896

Subset K Over 30 46 2276 99969 86559

Subset Z Over 12 32 1128 12004 35127

Average 9.42 36.75 922.75 15808.17 25593.67

Regarding the accuracy, the precision, and the elapsed runtime obtained in the tests,

the three best algorithms were the Decision Tree Classifier, the Random Forest Classifier,

and the Simple Logistics.

5.3 Performance Results and Analysis

In order to test the performance of the proposed architecture, their components (the

Master, the Classifiers, and the Trainers) were implemented in a workstation featuring an

Intel® CoreTM i5-9400 CPU @2.90GHz, with 32 GB of RAM. From the preliminary tests

regarding models accuracy, precision, and elapsed runtime, the Decision Tree Classifier,

the Random Forest Classifier, and the Simple Logistics were selected to be deployed in

the Classifiers. The datasets are generated per service, as they present higher results for

accuracy and precision, and they are generated in the dataset assembler each 100 thousand

Page 33 of 54

Chapter 5. Validation

classified records.

Five samples of the main CICDDoS2019 dataset were prepared and tested in two

scenarios: ”baseline” and ”proposed architecture”. These samples represent consecutive

iterations for the proposed architecture and they were obtained from the ”DDoS TFTP”

service. Each sample, i.e. Sample #0 to Sample #4, includes 200k randomly records

sequential in time, i.e. if the first sample was collected from 14h to 16h, the following is

from 16h to 20h.

The Sample #0 is used for the initial operation of the proposed architecture, and it

was trained in the trainers using the three algorithms selected, generating three machine

learning models. The accuracy and precision results for Sample #0 using the 3 models

are presented in Table 5.9. The results show that the Decision Tree Classifier was the best

regarding accuracy and precision and thus, it was selected as the model to evaluate the

next sample, i.e. Sample #1, in both scenarios.

Table 5.9: Accuracy and Precision for Sample #0

Sample #0

Algorithm Accuracy (%) Precision (%)

Decision Tree Classifier 93.04 91.85

Random Forest Classifier 92.43 91.07

Simple Logistics 91.78 90.32

In the baseline scenario, the Decision Tree Classifier model was deployed directly in

an IDS and tested with the remaining four different categorized samples, to obtain their

accuracy and precision. In the proposed architecture scenario, the remaining procedures

are depicted in Fig. 5.1. The three models were deployed in the Classifiers, and the Decision

Tree Classifier model was loaded into the IDS. This model was tested with Sample #1 to

calculate accuracy and precision (1). Each sample was sent, unclassified, to the master

(2) and the Classifiers categorize each sample, and these samples were classified by the

majority voting system (3). The classified samples were sent to Trainers (4) and each

model was deployed in the classifiers and the best deployed in the IDS (5). The process

was repeated for all remaining samples, and the Classifiers had the models generated by

Page 34 of 54

Chapter 5. Validation

the training of the previous sample. In the execution of the tests presented above, for each

sample tested in each architecture, the accuracy and precision of the model were obtained

to compare the results.

TrainersClassifiers

 Training

(4)

Master

Tested

(1)

Trainer01

DTC

Trainer02

RFC

Trainer03

SLog

ClassifierA

Model_DTC

ClassifierB

Model_RFC

ClassifierC

Model_SLog

IDS

Deploy

Best Model

(5)

Sample #1..#4

Vote,

Train,

Select &

Deploy

Unclassified

Logs

(2)

Classify

Logs (3)

Figure 5.1: Proposed Architecture validation scenario

Table 5.10 presents the models used for each sample for the Baseline and for the

Proposed Architecture. In the Baseline there are no new trainings, so the model used

was always the result of the training of Sample #0, that is, Decision Tree Classifier. In

the Proposed Architecture, with each new training, the best model is sent to the IDS,

and thus, the Decision Tree Classifier was selected for Sample #1, the Random Forest

Classifier was selected for Sample #2, and the Decision Tree Classifier was selected for

Samples #3 and #4.

Page 35 of 54

Chapter 5. Validation

Table 5.10: Models used for the Baseline and the Proposed Architecture scenarios

Baseline
Proposed

Architecture

Sample #1
Decision

Tree

Classifier

Decision Tree Classifier

Sample #2 Random Forest Classifier

Sample #3 Decision Tree Classifier

Sample #4 Decision Tree Classifier

Table 5.11 and Table 5.12 presents, respectively, the accuracy and the precision values

for each sample tested, and their difference in percentage points (p.p.) and percentage, in

the Baseline and in the Proposed Architecture scenarios.

Table 5.11: Accuracy results of Baseline and Proposed Architecture scenarios

Baseline

(B)

(%)

Proposed

Architecture

(PA) (%)

PA-B

(p.p.)

PA-B

(%)

Sample #1 87.85 87.85 0 0

Sample #2 87.17 93.27 + 6.10 + 6.99

Sample #3 88.81 94.89 + 6.08 + 6.85

Sample #4 85.29 95.11 + 9.82 + 11.51

Table 5.12: Precision results of Baseline and Proposed Architecture scenarios

Baseline

(B)

(%)

Proposed

Architecture

(PA) (%)

PA-B

(p.p.)

PA-B

(%)

Sample #1 91.76 91.76 0 0

Sample #2 89.49 95.39 + 5.90 + 6.59

Sample #3 90.22 95.77 + 5.55 + 6.15

Sample #4 86.27 95.94 + 9.67 + 11.21

Page 36 of 54

Chapter 5. Validation

Sample #1 Sample #2 Sample #3 Sample #4

86

88

90

92

94

96

(%)

Baseline Accuracy
Baseline Precision
Proposed Architecture Accuracy
Proposed Architecture Precision

Figure 5.2: Results of accuracy and precision for the Baseline and the Proposed Architec-
ture scenarios

Fig. 5.2 draws the results of Table 5.11 and Table 5.12. From these results, it can be

verified that in the proposed architecture, as the model is always trained with a dataset

that was categorized with the contribution of several algorithms, both the accuracy and

the precision improve over the time. After four consecutive iterations in the proposed

architecture, the accuracy increased by 9.82 p.p. or 11.51%, and the precision increased

by 9.67 p.p. or 11.21%, when compared to the baseline scenario.

The implementation of the proposed architecture assumes recurrent and intensive clas-

sification and training tasks, requiring time and resources. In order to expediently run

these tasks and apply the best model in each company, the proposed architecture was

deployed in Fed4FIRE+, a federated testbed, with Ray to distribute the tasks by the

available resources, as presented in Fig 5.3. Other federated testbed platforms and dis-

tributed tasks tools could be used, in case they present similar specifications.

Page 37 of 54

Chapter 5. Validation

Fed4FIRE+

TrainersClassifiers

 Training

Master

Trainer01

DTC

Trainer02

RFC

Trainer03

SLog

ClassifierA

Model_DTC

ClassifierB

Model_RFC

ClassifierC

Model_SLog

Classification

Ray

Figure 5.3: Implementation of the Proposed Architecture using Fed4FIRE+ and Ray

A set of tests was carried out to verify the runtime differences, using Fed4FIRE+ with

Ray, on a single server and on a multiple servers, in each step of iteration (classification

and training a subset). The single server used a workstation featuring an Intel® CoreTM

i5-9400 CPU @ 2.90GHz, with 32 GB of RAM, and the multiple servers used one work-

station (with the same specifications of the single server) for each classification or training

algorithm task.

Table 5.13, Table 5.14, Table 5.15, and Table 5.16 presents the time taken to classify

200k records on a single server (without ray) and multiple servers (distributed tasks man-

aged by ray), in four samples or iterations, i.e. Sample #1, Sample #2, Sample #3, Sample

#4. From the results obtained, it can be verified that, as in a single server (Server 0), the

classifications in the different models are carried out in sequence, the total time represents

the sum of each stage, between 7 010 ms (Sample #1) and 7 068 ms (Sample #3). In

turn, with multiple servers (Server 1, Server 2, and Server 3) the tasks run in parallel, the

total time is equal to the time taken by the longest task, so between 4 759 ms (Sample

#2) and 4 839 ms (Sample #1).

Page 38 of 54

Chapter 5. Validation

Table 5.13: Time to classify records on single server and on multiple servers (Sample #1)

Single Server Multiple Servers

Model Server 0 Server 1 Server 2 Server 3

DTC 998 ms 995 ms

RFC 4 863 ms 4 839 ms

SLog 1 149 ms 1 152 ms

Total 7 010 ms 4 839 ms

Table 5.14: Time to classify records on single server and on multiple servers (Sample #2)

Single Server Multiple Servers

Model Server 0 Server 1 Server 2 Server 3

DTC 991 ms 999 ms

RFC 4 724 ms 4 759 ms

SLog 1 348 ms 1 301 ms

Total 7 063 ms 4 759 ms

Table 5.15: Time to classify records on single server and on multiple servers (Sample #3)

Single Server Multiple Servers

Model Server 0 Server 1 Server 2 Server 3

DTC 1 032 ms 1 001 ms

RFC 4 835 ms 4 812 ms

SLog 1 201 ms 1 160 ms

Total 7 068 ms 4 812 ms

Page 39 of 54

Chapter 5. Validation

Table 5.16: Time to classify records on single server and on multiple servers (Sample #4)

Single Server Multiple Servers

Model Server 0 Server 1 Server 2 Server 3

DTC 1 004 ms 1 000 ms

RFC 4 801 ms 4 787 ms

SLog 1 253 ms 1 201 ms

Total 7 058 ms 4 787 ms

Table 5.17 presents the variation of the time used for classification in each Sample in a

single server and in a multiple servers. Fig. 5.4 draws the results of Table 5.17. From these

results, it can be verified that when multiple servers are used, there is a time reduction

between 31% and 33% compared to a single server.

Table 5.17: Variation of the time used for classification

Single Server

(S.S.)

(ms)

Multiple Servers

(M.S.)

(ms)

M.S. - S.S.

(%)

Sample #1 7 010 4 839 - 30.97

Sample #2 7 063 4 759 - 32.62

Sample #3 7 068 4 812 - 31.92

Sample #4 7 058 4 787 - 32.18

Page 40 of 54

Chapter 5. Validation

Sample #1 Sample #2 Sample #3 Sample #4
0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

(ms)

Time to classify in a Single Server
Time to classify in Multiple Servers

Figure 5.4: Results of time to classify subsets in one server and in multiple servers

Table 5.18, Table 5.19, Table 5.20, and Table 5.21 presents the time taken to training

a subset with 200k records on a single server (without ray) and on multiple servers (dis-

tributed tasks managed by ray), in four samples or iterations, i.e. Sample #1, Sample #2,

Sample #3, Sample #4. From the results obtained, it can be verified that as in a single

server (Server 0) the training in the different models are carried out in sequence, the total

time represents the sum of each training, so between 105 814 ms (Sample #1) and 106 228

ms (Sample #2). In turn, when using multiple servers (Server 1, Server 2, and Server 3),

i.e. with task distribution, the training runs in parallel, and the total time is equal to the

longest training, thus between 60 103 ms (Sample #2) and 60 999 ms (Sample #3).

Page 41 of 54

Chapter 5. Validation

Table 5.18: Time to train subsets on single server and on multiple servers (Sample #1)

Single Server Multiple Servers

Algorithm Server 0 Server 1 Server 2 Server 3

DTC 2 004 ms 1 998 ms

RFC 60 683 ms 60 591 ms

SLog 43 127 ms 43 419 ms

Total 105 814 ms 60 591 ms

Table 5.19: Time to train subsets on single server and on multiple servers (Sample #2)

Single Server Multiple Servers

Algorithm Server 0 Server 1 Server 2 Server 3

DTC 2 418 ms 2 193 ms

RFC 60 391 ms 60 103 ms

SLog 43 419 ms 43 399 ms

Total 106 228 ms 60 103 ms

Table 5.20: Time to train subsets on single server and on multiple servers (Sample #3)

Single Server Multiple Servers

Algorithm Server 0 Server 1 Server 2 Server 3

DTC 1 991 ms 1 999 ms

RFC 61 028 ms 60 999 ms

SLog 43 098 ms 42 897 ms

Total 106 117 ms 60 999 ms

Page 42 of 54

Chapter 5. Validation

Table 5.21: Time to train subsets on single server and on multiple servers (Sample #4)

Single Server Multiple Servers

Algorithm Server 0 Server 1 Server 2 Server 3

DTC 2 193 ms 2 154 ms

RFC 60 571 ms 60 721 ms

SLog 43 352 ms 43 004 ms

Total 106 116 ms 60 721 ms

Table 5.22 presents the variation of the time used for training in each sample in a single

server and in a multiple servers. Fig. 5.5 draws the results of Table 5.22. From these results,

it can be verified that when multiple servers are used, there is a time reduction of 43%

compared to a single server.

Table 5.22: Variation of the time used for training

Single Server

(S.S.)

(ms)

Multiple Servers

(M.S.)

(ms)

M.S. - S.S.

(%)

Sample #1 105 814 60 591 - 42.74

Sample #2 106 228 60 103 - 43.42

Sample #3 106 117 60 999 - 42.49

Sample #4 106 116 60 721 - 42.78

Page 43 of 54

Chapter 5. Validation

Sample #1 Sample #2 Sample #3 Sample #4
0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

80 000

90 000

100 000

110 000

(ms)

Time to training in a Single Server
Time to training in Multiple Servers

Figure 5.5: Results of time to training subsets in one server and in multiple servers

From the results presented in Table 5.17, Fig. 5.4, Table 5.22, and Fig. 5.5 it can be

verified the relevance of implementing this architecture in Fed4FIRE+ with the execution

of tasks in multiple servers managed by Ray. In the classification stages, a reduction

in time of between 31% and 33% was obtained. In the training stages, a reduction of

approximately 43% was obtained.

Page 44 of 54

Chapter 6

Conclusions

An IDS assists systems administrators by preventing and actuating on potential threats

to systems and data. Anomaly-based IDS can use machine learning algorithms to classify

events either as normal or anomalous. When using Supervised Learning, these algorithms

learn how to classify records from classified datasets. In order to improve the performance

of the classification algorithms, the datasets should be recent, contain data from differ-

ent sources in a collaborative approach, i.e. from different companies, and trained with

multiple algorithms.

In this document, a centralized and vote-based architecture is proposed to generate

classified datasets and improve performance of a supervised learning-based IDS. The pro-

posed architecture uses records from multiple IDS that are classified with multiple models,

and it uses a majority vote system to generate richer and classified datasets. These datasets

are then used to train and the best models by service are deployed in each IDS.

The performance of five machine learning algorithms (Decision Tree Classifier, Random

Forest Classifier, K-Nearest Neighbors, Simple Logistics, and Support Vector Machine)

was assessed regarding their accuracy, precision, and elapsed runtime values, and three

algorithms (Decision Tree Classifier, Random Forest Classifier, and Simple Logistics) were

selected to validate the architecture.

Five samples of the CICDDoS2019 dataset were prepared and used in a testbed de-

signed and deployed to assess the proposed architecture against a baseline scenario. From

the results obtained, the proposed architecture was able to generate classified datasets

and to choose the best model in each iteration, enabling an increase of 11.5% in accuracy

Page 45 of 54

Chapter 6. Conclusions

value and an increase of 11.2% in the precision value in the four tested iterations, when

compared to the baseline scenario.

The proposed architecture assumes recurrent classification and training with multi-

ple algorithms tasks, which extends the overall execution times and requires resources. In

order to expediently run these tasks and apply the best model in each company, the classi-

fication and training tasks of the proposed architecture were implemented in Fed4FIRE+,

with Ray to distribute tasks by the available resources. The use of Fed4FIRE+ resources

and Ray allowed a reduction of the classification time between 31% and 33%, and of the

training time by around 43%.

Future efforts may be developed to test the proposed architecture with other machine

learning algorithms and against other types of attacks and datasets. Furthermore, internal

procedures could be changed to dynamically balance the trade-off between complexity and

elapsed execution time against detection performance.

Page 46 of 54

References

[1] “The world’s most valuable resource is no longer oil, but data”. In: Economist (May

2017).

[2] George Grispos. “Criminals: Cybercriminals”. In: Encyclopedia of Security and Emer-

gency Management November (2019). doi: 10.1007/978-3-319-69891-5.

[3] Accenture. State of Cybersecurity Resilience 2021. 2021. url: https://www.accenture.

com/_acnmedia/PDF-165/Accenture-State-Of-Cybersecurity-2021.pdf.

[4] Thanh Cong Truong, Quoc Bao Diep, and Ivan Zelinka. “Artificial Intelligence in the

Cyber Domain: Offense and Defense”. In: Symmetry 12.3 (2020). issn: 2073-8994.

doi: 10.3390/sym12030410. url: https://www.mdpi.com/2073-8994/12/3/410.

[5] Manik Deep Singh. “Analysis of Host-Based and Network-Based Intrusion Detection

System”. In: Computer Network and Information Security 8 (2014), pp. 41–47. doi:

10.5815/ijcnis.2014.08.06. url: https://doi.org/10.5815/ijcnis.2014.

08.06.

[6] VVRPV Jyothsna, Rama Prasad, and K Munivara Prasad. “A review of anomaly

based intrusion detection systems”. In: International Journal of Computer Applica-

tions 28.7 (2011), pp. 26–35.

[7] Rohit Kumar Singh Gautam and Er Amit Doegar. “An Ensemble Approach for

Intrusion Detection System Using Machine Learning Algorithms”. In: Proceedings

of the 8th International Conference Confluence 2018 on Cloud Computing, Data Sci-

ence and Engineering, Confluence 2018 (2018), pp. 61–64. doi: 10.1109/CONFLUENCE.

2018.8442693.

Page 47 of 54

https://doi.org/10.1007/978-3-319-69891-5
https://www.accenture.com/_acnmedia/PDF-165/Accenture-State-Of-Cybersecurity-2021.pdf
https://www.accenture.com/_acnmedia/PDF-165/Accenture-State-Of-Cybersecurity-2021.pdf
https://doi.org/10.3390/sym12030410
https://www.mdpi.com/2073-8994/12/3/410
https://doi.org/10.5815/ijcnis.2014.08.06
https://doi.org/10.5815/ijcnis.2014.08.06
https://doi.org/10.5815/ijcnis.2014.08.06
https://doi.org/10.1109/CONFLUENCE.2018.8442693
https://doi.org/10.1109/CONFLUENCE.2018.8442693

References

[8] Sreenivas Sremath Tirumala, Hira Sathu, and Abdolhossein Sarrafzadeh. “Free and

open source intrusion detection systems: A study”. In: 2015 International Conference

on Machine Learning and Cybernetics (ICMLC). Vol. 1. 2015, pp. 205–210. doi:

10.1109/ICMLC.2015.7340923.

[9] Gulshan Kumar and Krishan Kumar. “The Use of Artificial-Intelligence-Based En-

sembles for Intrusion Detection: A Review”. In: Applied Computational Intelligence

and Soft Computing (2012). doi: 10.1155/2012/850160.

[10] Safwan Mawlood Hussein. “Performance Evaluation of Intrusion Detection System

Using Anomaly and Signature Based Algorithms to Reduction False Alarm Rate

and Detect Unknown Attacks”. In: 2016 International Conference on Computational

Science and Computational Intelligence (CSCI). 2016, pp. 1064–1069. doi: 10.1109/

CSCI.2016.0203.

[11] Tameem Ahmad, Mohd Asad Anwar, and Misbahul Haque. “Machine Learning Tech-

niques for Intrusion Detection”. In: (2013), pp. 47–65. doi: 10.4018/978-1-7998-

2242-4.ch003. arXiv: 1312.2177.

[12] Babak Khosravifar and Jamal Bentahar. “An Experience Improving Intrusion De-

tection Systems False Alarm Ratio by Using Honeypot”. In: 22nd International Con-

ference on Advanced Information Networking and Applications (aina 2008). 2008,

pp. 997–1004. doi: 10.1109/AINA.2008.44.

[13] R. Venkatesan et al. “A Novel Approach for Detecting DDoS Attack in H-IDS Using

Association Rule”. In: 2018 IEEE International Conference on System, Computa-

tion, Automation and Networking (ICSCA). 2018, pp. 1–5. doi: 10.1109/ICSCAN.

2018.8541174.

[14] Diogo Teixeira et al. “OSSEC IDS Extension to Improve Log Analysis and Override

False Positive or Negative Detections”. In: Journal of Sensor and Actuator Networks

2019, Vol. 8, Page 46 8.3 (Sept. 2019), p. 46. doi: 10.3390/JSAN8030046. url:

https://www.mdpi.com/2224-2708/8/3/46/htm.

[15] Xianwei Gao et al. “An Adaptive Ensemble Machine Learning Model for Intrusion

Detection”. In: IEEE Access 7 (2019), pp. 82512–82521. doi: 10.1109/ACCESS.

2019.2923640.

Page 48 of 54

https://doi.org/10.1109/ICMLC.2015.7340923
https://doi.org/10.1155/2012/850160
https://doi.org/10.1109/CSCI.2016.0203
https://doi.org/10.1109/CSCI.2016.0203
https://doi.org/10.4018/978-1-7998-2242-4.ch003
https://doi.org/10.4018/978-1-7998-2242-4.ch003
https://arxiv.org/abs/1312.2177
https://doi.org/10.1109/AINA.2008.44
https://doi.org/10.1109/ICSCAN.2018.8541174
https://doi.org/10.1109/ICSCAN.2018.8541174
https://doi.org/10.3390/JSAN8030046
https://www.mdpi.com/2224-2708/8/3/46/htm
https://doi.org/10.1109/ACCESS.2019.2923640
https://doi.org/10.1109/ACCESS.2019.2923640

References

[16] Mrutyunjaya Panda and Manas Patra. “Ensemble voting system for anomaly based

network intrusion detection”. In: FULL PAPER International Journal of Recent

Trends in Engineering 2 (Jan. 2009).

[17] Vikas C. Raykar et al. “Supervised Learning from Multiple Experts: Whom to Trust

When Everyone Lies a Bit”. In: Proceedings of the 26th Annual International Con-

ference on Machine Learning. Association for Computing Machinery, 2009, pp. 889–

896. isbn: 9781605585161. doi: 10.1145/1553374.1553488.

[18] Mario Di Mauro and Cesario Di Sarno. “Improving SIEM capabilities through an

enhanced probe for encrypted Skype traffic detection”. In: J. Inf. Secur. Appl. 38

(2018), pp. 85–95.

[19] Ahmed Mahfouz et al. “Ensemble Classifiers for Network Intrusion Detection Using

a Novel Network Attack Dataset”. In: Future Internet 12.11 (2020). issn: 1999-5903.

doi: 10.3390/fi12110180. url: https://www.mdpi.com/1999-5903/12/11/180.

[20] Mohammad Hashem Haghighat and Jun Li. “Intrusion detection system using voting-

based neural network”. In: Tsinghua Science and Technology 26.4 (2021), pp. 484–

495. doi: 10.26599/TST.2020.9010022.

[21] Kishor Kumar Gulla et al. “Machine learning based intrusion detection techniques”.

In: Handbook of Computer Networks and Cyber Security: Principles and Paradigms

Icoei (2019), pp. 873–888. doi: 10.1007/978-3-030-22277-2_35.

[22] L. Haripriya and M. A. Jabbar. “Role of Machine Learning in Intrusion Detection

System: Review”. In: Proceedings of the 2nd International Conference on Electronics,

Communication and Aerospace Technology, ICECA 2018 Iceca (2018), pp. 925–929.

doi: 10.1109/ICECA.2018.8474576.

[23] Iksoo Shin et al. “Platform design and implementation for flexible data processing

and building ML models of IDS alerts”. In: Proceedings - 2019 14th Asia Joint

Conference on Information Security, AsiaJCIS 2019 (2019), pp. 64–71. doi: 10.

1109/AsiaJCIS.2019.000-4.

[24] Aditya Vikram and Mohana. “Anomaly detection in Network Traffic Using Unsuper-

vised Machine learning Approach”. In: 2020 5th International Conference on Com-

Page 49 of 54

https://doi.org/10.1145/1553374.1553488
https://doi.org/10.3390/fi12110180
https://www.mdpi.com/1999-5903/12/11/180
https://doi.org/10.26599/TST.2020.9010022
https://doi.org/10.1007/978-3-030-22277-2_35
https://doi.org/10.1109/ICECA.2018.8474576
https://doi.org/10.1109/AsiaJCIS.2019.000-4
https://doi.org/10.1109/AsiaJCIS.2019.000-4

References

munication and Electronics Systems (ICCES). 2020, pp. 476–479. doi: 10.1109/

ICCES48766.2020.9137987.

[25] Eirini Anthi et al. “A Supervised Intrusion Detection System for Smart Home IoT

Devices”. In: IEEE Internet of Things Journal 6.5 (2019), pp. 9042–9053. doi: 10.

1109/JIOT.2019.2926365.

[26] Kazi Abu Taher, Billal Mohammed Yasin Jisan, and Md. Mahbubur Rahman. “Net-

work Intrusion Detection using Supervised Machine Learning Technique with Fea-

ture Selection”. In: 2019 International Conference on Robotics,Electrical and Signal

Processing Techniques (ICREST). 2019, pp. 643–646. doi: 10.1109/ICREST.2019.

8644161.

[27] Aamir S Ahanger, Sajad M Khan, and Faheem Masoodi. “An Effective Intrusion

Detection System using Supervised Machine Learning Techniques”. In: 2021 5th In-

ternational Conference on Computing Methodologies and Communication (ICCMC).

2021, pp. 1639–1644. doi: 10.1109/ICCMC51019.2021.9418291.

[28] Deepa Rani and Narottam Chand Kaushal. “Supervised Machine Learning Based

Network Intrusion Detection System for Internet of Things”. In: 2020 11th Inter-

national Conference on Computing, Communication and Networking Technologies

(ICCCNT). 2020, pp. 1–7. doi: 10.1109/ICCCNT49239.2020.9225340.

[29] Guochen Shi and Gang He. “Collaborative Multi-agent Reinforcement Learning for

Intrusion Detection”. In: 2021 7th IEEE International Conference on Network In-

telligence and Digital Content (IC-NIDC). 2021, pp. 245–249. doi: 10.1109/IC-

NIDC54101.2021.9660402.

[30] Shahid Latif et al. “Intrusion Detection Framework for the Internet of Things using

a Dense Random Neural Network”. In: IEEE Transactions on Industrial Informatics

(2021). doi: 10.1109/TII.2021.3130248.

[31] Kunal and Mohit Dua. “Machine Learning Approach to IDS: A Comprehensive

Review”. In: Proceedings of the 3rd International Conference on Electronics and

Communication and Aerospace Technology, ICECA 2019 (2019), pp. 117–121. doi:

10.1109/ICECA.2019.8822120.

Page 50 of 54

https://doi.org/10.1109/ICCES48766.2020.9137987
https://doi.org/10.1109/ICCES48766.2020.9137987
https://doi.org/10.1109/JIOT.2019.2926365
https://doi.org/10.1109/JIOT.2019.2926365
https://doi.org/10.1109/ICREST.2019.8644161
https://doi.org/10.1109/ICREST.2019.8644161
https://doi.org/10.1109/ICCMC51019.2021.9418291
https://doi.org/10.1109/ICCCNT49239.2020.9225340
https://doi.org/10.1109/IC-NIDC54101.2021.9660402
https://doi.org/10.1109/IC-NIDC54101.2021.9660402
https://doi.org/10.1109/TII.2021.3130248
https://doi.org/10.1109/ICECA.2019.8822120

References

[32] Weiyang Mo et al. “Deep-neural-network-based wavelength selection and switching

in ROADM systems”. In: Journal of Optical Communications and Networking 10

(2018). issn: 19430620. doi: 10.1364/JOCN.10.0000D1.

[33] Silvestre Malta., Pedro Pinto., and Manuel Veiga. “Using Syntactic Similarity to

Shorten the Training Time of Deep Learning Models using Time Series Datasets: A

Case Study”. In: Proceedings of the 2nd International Conference on Deep Learning

Theory and Applications - DeLTA, INSTICC. SciTePress, 2021, pp. 93–100. isbn:

978-989-758-526-5. doi: 10.5220/0010515700930100.

[34] Joost Verbraeken et al. “A Survey on Distributed Machine Learning”. In: ACM

Computing Surveys 53.2 (2020), pp. 1–33. issn: 15577341. doi: 10.1145/3377454.

url: http://arxiv.org/abs/1912.09789.

[35] Fed4FIRE+. About Fed4FIRE+. 2022. url: https://www.fed4fire.eu/the-

project/ (visited on 01/10/2022).

[36] Global Environment for Network Innovations (GENI). What is GENI? 2022. url:

https://www.geni.net/about-geni/what-is-geni/ (visited on 01/10/2022).

[37] Smart Applications on Virtual Infrastructure (SAVI). 2022. url: https://www.

savinetwork.ca/ (visited on 01/10/2022).

[38] TaeHong Kim et al. “Survey and Performance Test of Python-Based Libraries for

Parallel Processing”. In: The 9th International Conference on Smart Media and

Applications. SMA 2020. Association for Computing Machinery, 2020, pp. 154–157.

isbn: 9781450389259. doi: 10.1145/3426020.3426057. url: https://doi.org/

10.1145/3426020.3426057.

[39] Ray. What is Ray? 2021. url: https://docs.ray.io/en/master/ (visited on

01/12/2022).

[40] Using IPython for parallel computing. url: https://ipyparallel.readthedocs.

io/en/latest/ (visited on 01/12/2022).

[41] dispy: Distributed and Parallel Computing with/for Python — dispy 4.12.0 docu-

mentation. url: http://dispy.sourceforge.net/ (visited on 01/12/2022).

Page 51 of 54

https://doi.org/10.1364/JOCN.10.0000D1
https://doi.org/10.5220/0010515700930100
https://doi.org/10.1145/3377454
http://arxiv.org/abs/1912.09789
https://www.fed4fire.eu/the-project/
https://www.fed4fire.eu/the-project/
https://www.geni.net/about-geni/what-is-geni/
https://www.savinetwork.ca/
https://www.savinetwork.ca/
https://doi.org/10.1145/3426020.3426057
https://doi.org/10.1145/3426020.3426057
https://doi.org/10.1145/3426020.3426057
https://docs.ray.io/en/master/
https://ipyparallel.readthedocs.io/en/latest/
https://ipyparallel.readthedocs.io/en/latest/
http://dispy.sourceforge.net/

References

[42] Pandaral·lel. url: https://github.com/nalepae/pandarallel/tree/v1.5.4

(visited on 01/12/2022).

[43] Dask. Dask - Documentation. 2022. url: https://docs.dask.org/en/latest/

(visited on 01/12/2022).

[44] Joblib. Joblib: running Python functions as pipeline jobs. 2022. url: https : / /

joblib.readthedocs.io/en/latest/ (visited on 01/12/2022).

[45] Philipp Moritz et al. “Ray: A Distributed Framework for Emerging AI Applications”.

In: 13th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 18). USENIX Association, Oct. 2018, pp. 561–577. isbn: 978-1-939133-08-3.

url: https://www.usenix.org/conference/osdi18/presentation/moritz.

[46] Enzo Fabbiani et al. “Distributed Big Data Analysis for Mobility Estimation in In-

telligent Transportation Systems”. In: High Performance Computing. 2016, pp. 146–

160. isbn: 978-3-319-57972-6. doi: https://doi.org/10.1007/978-3-319-57972-

6_11.

[47] KDD Cup 1999. 1999. url: http://kdd.ics.uci.edu/databases/kddcup (visited

on 12/21/2021).

[48] Nsl-kdd dataset. 2014. url: https://www.unb.ca/cic/datasets/nsl.html (visited

on 12/21/2021).

[49] The UNSW-NB15 Dataset Description. 2015. url: https://www.unsw.adfa.edu.

au/unsw- canberra- cyber/cybersecurity/ADFA- NB15- Datasets/ (visited on

12/21/2021).

[50] Iman Sharafaldin et al. “Developing realistic distributed denial of service (DDoS)

attack dataset and taxonomy”. In: Proceedings - International Carnahan Conference

on Security Technology 2019-October.Cic (2019). issn: 10716572. doi: 10.1109/

CCST.2019.8888419.

[51] kaspersky. What is a DDoS Attack? - DDoS Meaning. 2022. url: https://www.

kaspersky.com/resource-center/threats/ddos-attacks.

Page 52 of 54

https://github.com/nalepae/pandarallel/tree/v1.5.4
https://docs.dask.org/en/latest/
https://joblib.readthedocs.io/en/latest/
https://joblib.readthedocs.io/en/latest/
https://www.usenix.org/conference/osdi18/presentation/moritz
https://doi.org/https://doi.org/10.1007/978-3-319-57972-6_11
https://doi.org/https://doi.org/10.1007/978-3-319-57972-6_11
http://kdd.ics.uci.edu/databases/kddcup
https://www.unb.ca/cic/datasets/nsl.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://doi.org/10.1109/CCST.2019.8888419
https://doi.org/10.1109/CCST.2019.8888419
https://www.kaspersky.com/resource-center/threats/ddos-attacks
https://www.kaspersky.com/resource-center/threats/ddos-attacks

References

[52] SecurityWeek Eduard Kovacs. RPC Portmapper Abused for DDoS Attack Reflection,

Amplification. 2015. url: https://www.securityweek.com/rpc- portmapper-

abused-ddos-attack-reflection-amplification.

[53] Kishore Babu Dasari and Nagaraju Devarakonda. “Detection of Different DDoS At-

tacks Using Machine Learning Classification Algorithms”. In: Ingénierie des systèmes

d information 26.5 (Oct. 2021), pp. 461–468. doi: 10.18280/isi.260505. url:

https://doi.org/10.18280/isi.260505.

[54] Sanchita Pradhan. “Internet and Society: Latest Developments in Cyberspace”. In:

Nirma University Law Journal 6.2 (Dec. 2018). url: https://ssrn.com/abstract=

3442953.

[55] Rizgar R. Zebari, Subhi R. M. Zeebaree, and Karwan Jacksi. “Impact Analysis of

HTTP and SYN Flood DDoS Attacks on Apache 2 and IIS 10.0 Web Servers”. In:

2018 International Conference on Advanced Science and Engineering (ICOASE).

2018, pp. 156–161. doi: 10.1109/ICOASE.2018.8548783.

[56] Saif ur Rehman et al. “DIDDOS: An approach for detection and identification of

Distributed Denial of Service (DDoS) cyberattacks using Gated Recurrent Units

(GRU)”. In: Future Generation Computer Systems 118 (2021), pp. 453–466. issn:

0167-739X. doi: https://doi.org/10.1016/j.future.2021.01.022. url:

https://www.sciencedirect.com/science/article/pii/S0167739X21000327.

[57] Arvind Prasad and Shalini Chandra. “VMFCVD: An Optimized Framework to Com-

bat Volumetric DDoS Attacks using Machine Learning”. In: Arabian Journal for

Science and Engineering (2022). doi: 10.1007/s13369-021-06484-9.

[58] Nisar Memon, Intesab Hussain, and Zahid Yousaf. “Analysis and Detection of DDoS

Attacks Targetting Virtualized Servers”. In: (July 2019).

[59] Celestine Iwendi et al. “Sustainable Security for the Internet of Things Using Artifi-

cial Intelligence Architectures”. In: ACM Trans. Internet Technol. 21.3 (June 2021).

issn: 1533-5399. doi: 10.1145/3448614.

[60] Rami J. Alzahrani and Ahmed Alzahrani. “Security Analysis of DDoS Attacks Using

Machine Learning Algorithms in Networks Traffic”. In: Electronics 10.23 (2021).

Page 53 of 54

https://www.securityweek.com/rpc-portmapper-abused-ddos-attack-reflection-amplification
https://www.securityweek.com/rpc-portmapper-abused-ddos-attack-reflection-amplification
https://doi.org/10.18280/isi.260505
https://doi.org/10.18280/isi.260505
https://ssrn.com/abstract=3442953
https://ssrn.com/abstract=3442953
https://doi.org/10.1109/ICOASE.2018.8548783
https://doi.org/https://doi.org/10.1016/j.future.2021.01.022
https://www.sciencedirect.com/science/article/pii/S0167739X21000327
https://doi.org/10.1007/s13369-021-06484-9
https://doi.org/10.1145/3448614

References

issn: 2079-9292. doi: 10.3390/electronics10232919. url: https://www.mdpi.

com/2079-9292/10/23/2919.

[61] Mateo Florez Cardenas and Gabriel Acar. Ethical Hacking of a Smart Fridge : Eval-

uating the cybersecurity of an IoT device through gray box hacking. 2021.

[62] Matheus P. Novaes et al. “Adversarial Deep Learning approach detection and de-

fense against DDoS attacks in SDN environments”. In: Future Generation Computer

Systems 125 (2021). issn: 0167-739X. doi: 10.1016/j.future.2021.06.047. url:

https://www.sciencedirect.com/science/article/pii/S0167739X21002429.

[63] Junhong Li. “Detection of DDoS Attacks Based On Dense Neural Networks, Au-

toenconders And Pearson Correlation Coefficient”. In: (2020). url: http://hdl.

handle.net/10222/78536.

Page 54 of 54

https://doi.org/10.3390/electronics10232919
https://www.mdpi.com/2079-9292/10/23/2919
https://www.mdpi.com/2079-9292/10/23/2919
https://doi.org/10.1016/j.future.2021.06.047
https://www.sciencedirect.com/science/article/pii/S0167739X21002429
http://hdl.handle.net/10222/78536
http://hdl.handle.net/10222/78536

	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Context
	Problem Statement and Motivation
	Objectives
	Contributions
	Organization

	Background
	Intrusion Detection Systems
	Machine Learning

	Related Work
	Intrusion Detection Systems and Machine Learning
	Scalable Testbed Platforms and Tasks Ditribution

	The Proposed Architecture
	Validation
	Dataset Selection and Preparation
	Machine Learning Algorithms Selection
	Performance Results and Analysis

	Conclusions
	References

