
Received June 16, 2021, accepted July 16, 2021, date of publication July 21, 2021, date of current version July 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3099017

An Advertising Overflow Attack Against
Android Exposure Notification System Impacting
COVID-19 Contact Tracing Applications
HENRIQUE FARIA 1, SARA PAIVA 2, AND PEDRO PINTO 2,3
1Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial Nun’Álvares, 4900-347 Viana do Castelo, Portugal
2ADiT-LAB, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial Nun’Álvares, 4900-347 Viana do Castelo, Portugal
3INESC TEC, 4200-465 Porto, Portugal

Corresponding author: Henrique Faria (henriquefaria@ipvc.pt)

This work was supported by the Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL
2020 Partnership Agreement, through the European Regional Development Fund (ERDF), within Project Cybers SeC IP under
Grant NORTE-01-0145-FEDER-000044.

ABSTRACT The digital contact tracing applications are one of the many initiatives to fight the COVID-19
virus. Some of these Apps use the Exposure Notification (EN) system available on Google and Apple’s
operating systems. However, EN-based contact tracing Apps depend on the availability of Bluetooth
interfaces to exchange proximity identifiers, which, if compromised, directly impact their effectiveness. This
paper discloses and details the Advertising Overflow attack, a novel internal Denial of Service (DoS) attack
targeting the EN system on Android devices. The attack is performed by a malicious App that occupies all
the Bluetooth advertising slots in an Android device, effectively blocking any advertising attempt of EN or
other Apps. The impact of the disclosed attack and other previously disclosed DoS-based attacks, namely
Battery Exhaustion and Storage Drain, were tested using two target smartphones and other six smartphones
as attackers. The results show that the Battery Exhaustion attack imposes a battery discharge rate 1.95 times
higher than in the normal operation scenario. Regarding the Storage Drain, the storage usage increased more
than 30 times when compared to the normal operation scenario results. The results of the novel attack reveal
that a malicious App can prevent any other App to place their Bluetooth advertisements, for any chosen
time period, thus canceling the operation of the EN system and compromising the efficiency of any COVID
contact tracing App using this system.

INDEX TERMS Attack, applications, android, denial of service, COVID-19, contact tracing, exposure
notification.

I. INTRODUCTION
The worldwide spread of the COVID-19 virus captured soci-
ety’s attention and pushed for efforts to contain and mitigate
the impact and the effects of the current pandemic. In the
face of this threat against its citizens, governments’ reactions
have included closing borders, banning travel, and applying
strict quarantine procedures. One of the strategies adopted
by governments and countries’ health authorities consisted
of relying on digital contact tracing applications (or Apps),
to enable citizens to monitor their exposure to COVID-19.

Contact tracing Apps automatically register and trace the
user’s contact history and notify users when they have been

The associate editor coordinating the review of this manuscript and

approving it for publication was Diana Gratiela Berbecaru .

in contact with an infected user [1]. In comparison to other
contact tracing alternatives, the contact tracing Apps allow
instantaneous notifications of contacts, avoid loss of infor-
mation due to recall bias and can be scaled to large amounts
of users. These Apps are usually deployed in smartphones
and use their already existing interfaces, such as Bluetooth
and GPS, to track encounters between users by exchanging
anonymous identifiers. The effectiveness of a contact trac-
ing App is dependent on its adoption rate in the general
population [2].

In a technical perspective, centralized or decentralized
frameworks were developed to support contact tracing
Apps. Exposure Notification (EN) system, also known as
Google/Apple Exposure Notification (GAEN), was released
by Google and Apple, with similarities to an already existing

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 103365

https://orcid.org/0000-0002-7210-6918
https://orcid.org/0000-0002-0041-8939
https://orcid.org/0000-0003-1856-6101
https://orcid.org/0000-0003-1930-9473


H. Faria et al.: Advertising Overflow Attack Against Android Exposure Notification System

protocol named Decentralized Privacy-Preserving Proximity
Tracing (DP-3T), and consists of a decentralized architecture
that, according to [3], has the focus on privacy. This archi-
tecture ensures interoperability between Apple and Android
devices, allows the execution of the contact tracing tasks
at the Operating System (OS) level, and prevents the OS
from terminating or interfering with a task running on back-
ground [2]. The study in [4] highlights that the EN allows
to obtain an estimated risk of infection for each day, while
recording no more than 30 minutes of exposure contacts to
preserve the anonymity of an infection source.

Regarding EN attacks, vulnerabilities exist either in the
communication between participants, in the communication
with the health authority, or in the contact tracing features [5].
As seen in [6], even though privacy concerns are a primary
focus of EN, an attacker can trace a single user by matching
his anonymous identifier, replay the messages received as if
they were legitimate, amongst other attacks. These vulnera-
bilities and attacks can compromise the contact tracing strat-
egy, and can be seen as an opportunity by malicious agents to
perform high impact attacks, such as terrorist attacks [7], [8].

Since the EN depends on the Bluetooth interface of the
mobile devices, it requires Bluetooth access and the avail-
ability of its advertising transmission system to exchange the
anonymous identifiers. If a contact tracing App using EN
is inhibited to use these advertisements transmission slots,
the efficiency of the contact tracing can be severely impacted.
The inhibition can be inadvertently or maliciously caused by
another App, e.g by taking all advertisements transmission
slots available in the system.

As main contribution, this paper presents a novel adver-
tisement overflow attack on EN system. This attack allows a
malicious mobile App to exhaust all the advertisements trans-
mission slots, thus compromising all other Apps depending
on Bluetooth advertisements, including the contact tracing
Apps using the EN. In a real scenario, this attack can impair
the efficiency of EN system and any contact tracing App that
uses it, since the mobile user (target) will not be able to
exchange the anonymous identifiers. Thus, if the user is
infected with COVID-19 and inserts an infection code on the
contact tracing App, the other mobile users will not detect any
contact and will not trigger any exposure warning.

Additionally, this paper analyses the impact of inter-
nal DoS-based attacks, namely, Battery Exhaustion, Stor-
age Drainage, and the novel Advertisement Overflow attack.
Based on our experiments, the impact of the Battery Exhaus-
tion and the Storage Drainage attacks is presented, and tests
carried out regarding the Advertising Overflow attack con-
firmed that a malicious App can overflow the Bluetooth
advertisements, impacting any App that requires this inter-
face, including the COVID tracing Apps using EN.

This paper is organized as follows. In section II, back-
ground concepts regarding EN, Android, and Bluetooth are
explained. Section III presents a systematic review for the
existing EN attacks. Section IV details the novel Advertising
Overflow attack. Section V presents the impact assessment

regarding three DoS-based attacks including the Advertis-
ing Overflow attack. Section VI analyzes and discusses the
obtained results and their impact. Finally, section VII draws
conclusions and points to future work.

II. BACKGROUND
COVID contact tracingApps have been developedworldwide
to assist in the detection of infected people by COVID-19 and
in preventing the increase of transmission chains. For the
Apps based on EN, Google and Apple defined that each
country could choose one digital contact tracing App. Table 1
compiles information from [9] and lists the currently avail-
able contact tracing Apps in Europe, the system they use
(EN or other), the number of installs registered in Google
Play Store, and the countries supporting them. Only 2 of a
total of 24 contact tracking apps are not EN-based, the latter
totaling more than 38 million installs by European citizens.

TABLE 1. European contact tracing apps and their systems.

For contact tracing Apps to operate with EN they require
a mobile device with a compatible hardware and operat-
ing system, including EN and Bluetooth Low-Energy (BLE)
support. Fig. 1 presents the interactions performed by an
EN-based contact tracing App using Android OS.

According to [10], the core features of Contact Tracing
Apps are the following:
• Show notifications and instructions to the user in case of
a confirmed exposure to an infected user.

• Allow users to control when the Bluetooth functions
(broadcast and scan) are active.

• Polling the server for new keys, receiving the files with
the diagnosis keys and passing them to EN.

• In case of an infection, retrieving the keys for the last
14 days and upload them to the server.

103366 VOLUME 9, 2021



H. Faria et al.: Advertising Overflow Attack Against Android Exposure Notification System

FIGURE 1. Schematic of contact tracing apps based on EN contact tracing
apps and its interactions with the user, other smartphones, and the
health authority.

The Contact Tracing Apps communicate with the EN and
also handle external communications such as sending Hyper-
Text Transfer Protocol Secure (HTTPS) requests to theHealth
Authority server. In the event of an infection, the Contact
Tracing App allows the usage of an infection code to request
the last 14 days keys from the EN and upload them to the
Health Authority via Wi-Fi, for example. It also requests
Diagnosis Keys from the same server periodically and passes
them to the EN to check for matches. The EN generates the
Proximity Identifiers from the received keys and compares
them with the ones already stored in the local storage. These
identifiers are received via Bluetooth during the exchange
process with other devices.

In the case of a positive match, the EN sends that infor-
mation to the Contact Tracing App that is responsible to
appropriately display that information and instructions to
the user.

The EN and other similar protocols use the broadcast pro-
cedures such as advertisements that do not require the estab-
lishment of a connection to exchange identifiers. A device can
periodically advertise a data block, and other devices are able
to scan and process it. When a device broadcasts an advertis-
ing channel packet, the other devices need to be in scanning
mode to receive it. Since both actions are not synchronized,
there are no guarantees that the advertising packet will be
received [11]. In the BLE standard, the maximum size for
an advertising block is 31 bytes. The option adopted by EN is
sending a payload with a 16-bit Universally Unique Identifier
(UUID) to mark the payload as belonging to the EN and using
16 bytes for the Proximity Identifier and another 4 bytes for
encrypted metadata that is sent together with the Proximity
Identifier. If the user wants to disable the contact tracing
operation, the Contact Tracing App sends an event to EN
to immediately stop the BLE broadcast and scan operations,
such as the Proximity Identifiers exchange.

The EN is responsible for the generation, storage and
exchange of the proximity identifiers, where matches
processing and key generation is accomplished in the
background.

As detailed in [5] and [12], the key generation procedure of
EN is as depicted in the Fig. 2. The system generates a daily
random key named Temporary Exposure Key (TEK) used to
derive a Rolling Proximity Identifier Key (RPIK) generated
each 15 minutes, which in turn is used to derive an identifier
named Rolling Proximity Identifier (RPI). In the Android OS,
the EN is incorporated in the Google Play Services and it is
responsible for:
• Managing the keys used by the system, including TEKs
and RPIs.

• Managing Bluetooth functions, including scans, storage
and analysis of exposure risk.

• Ask for user consent on the first activation of the system
and before uploading the keys in case of an infection.

If the user has a confirmed infection, the health author-
ity provides a code that allows him to report the infection,
by uploading the TEKs from the last 14 days to the server. The
other users later download these keys, and EN derives the
RPIs and checks for matches in its contact records.

FIGURE 2. Schematic of how EN generates and exchanges the RPIs.

EN advertises over BLE each of the generated RPIs dur-
ing several minutes. When a RPI rotates, the MAC address
rotates as well to anonymize the user’s device. According
to [12] there is a tolerance (within 2 hours of its original time
interval) for the RPI’s validity, and it should be advertised
using time intervals of 250 milliseconds. In the receiver,
the App keeps the TEKs for 14 days and then deletes them.

Apart from advertising, EN also scans every 3 to 5 min-
utes for Bluetooth advertisements with the matching service
UUID [12]. Whenever it receives a valid RPI, it stores it in
the device to be later used to check for matches.

The advertising and scanning features are present in
devices running Android OS from version 4.3 [13]. Given the

VOLUME 9, 2021 103367



H. Faria et al.: Advertising Overflow Attack Against Android Exposure Notification System

time since its introduction, these features are commonly seen
in most modern smartphones [11].

III. RELATED WORK ON EXPOSURE NOTIFICATION
SYSTEM ATTACKS
To collect the related work on existing attacks concerning
the EN system, a systematic review was conducted. The
systematic review process and results are presented in Fig. 3.
The research question was defined as ‘‘What are the known
attacks of EN and other decentralized systems?’’. Google
Scholar was selected as search engine and the query presented
in Fig. 3was inserted in this search engine inMarch 4th, 2021,
returning a total of 115 papers. Each paper had its abstract,
content, and conclusions analysed to check for a match on a
specific EN attack. After filtering, a total of 21 papers were
relevant for further analysis, addressing a group of 19 unique
attacks. Table 2 depicts each attack and their respective
sources.

FIGURE 3. Stages, options and numbers of the systematic review
performed.

Each disclosed attack is reviewed as follows:
1) Replay - This attack consists of sending RPIs already

received by a device [16]. In [6], the author replayed
released RPIs from the health authority and man-
aged to trigger a exposure warning in the target. Oth-
ers [18]–[20] defined scenarios such as advertising the
received identifiers either immediately or at a later
time. [22] presents an approach using a malicious
Software Development Kit (SDK) injected in an App to
replay received identifiers. [21] mentions the Contact
Pollution attack that works similarly to the Replay
attack mentioned in [6]. Mitigation strategies for this
type of attack have been proposed using protocols and
location of devices [6], [17]–[20].

2) Relay - This attack is similar to the Replay attacks; an
attacker receives a RPI in one location and relays it
to another device in a different location. The authors
in [6], [18], and [24] present the attack exploring the
fact that EN protocol do not registers location data
in each encounter. In [25] a scenario for this attack
is presented to use this attack for voter suppression
during the pandemic of COVID-19. [23] successful
implemented this attack with EN and devices such as
Raspberry Pis were used to relay RPIs across a city.
Acoording to [26] the mitigation strategies for this type
of attack may introduce significant complexity to the
system.

3) Linking - This attack is performed when an attacker
associates two transmitted messages to the same
device [22]. The author in [18] considers using the
message timing and signal strength to link the received
messages. It also suggested to use rejection sample
techniques to add noise to the signal strength.

4) Battery Exhaustion - This attack is accomplished when
an attacker sends large quantities of RPIs to a target
exhausting its battery. This Denial of Service (DoS)-
based attack is mentioned in [18], [28], and [29], and
the authors highlight that the users tend to reject and
uninstall the Contact Tracing Apps assuming that they
will increase of the battery consumption rate. To mit-
igate these attacks, authors in [18] propose to use a
proof-of-work to check if a received message is valid
when under a high request load.

5) Profiling - in this attack, users movements are profiled
by capturing their RPIs [23], [24], [30]. Authors in [23]
test this attack by deploying devices to capture RPIs in
critical points in a city.Whenever a key is reported, they
check if there is a match, and this allows to trace the
movements of a given user.

6) Singling-out - This attack is described in [18] and it
is performed when an attacker records only 1 RPI.
The attacker can then check if a given user is infected
when the health authority publishes new TEKs. In [21],
the authors executed a similar attack named Contact
Isolation. They managed to associate a RPI to a device.
This work also proposes other advanced techniques to
link the RPI to a specific device, such as using Wi-Fi
data or the smartphone’s camera.

7) Storage Drainage - An attacker sends valid RPIs to the
target and occupies storage space on the device [28],
[29]. It is similar to the Battery Exhaustion attack but it
is directed to the devices’ storage [18].

8) Time Travel - In this attack, the attacker changes the
time on the target device, setting the date to an earlier
day, and injects RPIs that were valid for that specific
time period. In [27] the authors managed to test multi-
ple methods such as manually changing the time in the
device’s settings, and confirmed that they could indeed
trigger alerts in the device with RPIs from previous
days.

103368 VOLUME 9, 2021



H. Faria et al.: Advertising Overflow Attack Against Android Exposure Notification System

TABLE 2. Identified attacks and their sources.

9) Troll - This attack is performed when an adversary
knows he is infected and attaches his device to a carrier
to spread his RPIs around unsuspecting users [18].
When his TEKs are published, multiple exposure alerts
will be triggered.

10) Belated Replay - In this attack, an attacker obtains
TEKs published by the health authority and replays the
derived RPIs [5]. This attack is also referred to as Keep
It Simple Stupid (KISS) attack. The keys published
are usually outdated, but some are still valid since life
tolerance is set to 2 hours for a RPI. In [5] authors
analyzed that with interoperability between countries,
the health authorities do not publish the keys at the
same time. The adversary can obtain keys from one
country and use them in another.

11) False Report - This attack is performed when an
attacker can falsely report their own keys as infected
and generate alerts in other users [6].

12) Jamming - This attack consists in affecting the Blue-
tooth data transmission between two devices, through
a device that is constantly transmitting thousands of
invalid RPIs. In [14], the authors present a low-cost
jamming attack that uses smartphones or Raspberry PIs
to emit tokens faster than the target Apps. The authors
found that distance estimation was affected and EN
received less RPIs.

13) Malicious SDK - SDKs can be used to massively
deploy attacks in mobile devices. In [31], the authors
describe SDK-based attacks, such as the Biosurveil-
lance attack which is a massive surveillance technique
to infer the health status of the device’s owner using a
malicious SDK. At a large scale, the attacker can gather
information in an entire region and what users might or
not be infected.

14) Nerd - This attack is performed when an attacker’s
App collects specific information (such as GPS

location, timestamps, or Wi-Fi networks) for each
encounter simultaneously as the EN [6]. All the data
can be inserted in a database and be further used to
identify reported cases.

15) Paparazzi - Similar to the Singling-out attack, this
attack is accomplished when an attacker, using a pow-
erful antenna, captures the RPIs from a specific user
and check them later for positive matches [6]. In [19],
the authors analyze this attack in the context of a
massive surveillance system. Variants of this attack are
presented such as the Orwell attack, in which there is
a collusion between the attacker and health authority’s
server.

16) Passive Disruption - Passive disruption attack can be
performed by disabling the resources necessary for
the EN to function. [15]. In the case of Android OS,
disabling the GPS, halts also all the EN-based Apps.

17) Private Encounter Disclosure - Encounters between
two users can be disclosed by an attacker if the
attacker can successfully raise an alert on one of their
devices [6]. When one of the users reports an alert,
the attacker waits to see if the other user has an alert
raised when the keys are reported to health authorities.
The authors suggest adding a delay to the releases of
keys, although this may decrease efficiency.

18) Simulated EN - This attack is performed by an App that
operates similarly to EN. However, as explained in [5],
the attacker can change the signal strength when adver-
tising, meaning that it can be advertising from far away
but it will be registered as if it was close. The target
receives the RPI and EN falsely believes the attacker is
closer than he is.

19) Terrorist Report - this attack is an improvement on
the False Report attack. In [7], authors disclose a
blockchain black market solution that allows safely
selling and buying infected keys.

VOLUME 9, 2021 103369



H. Faria et al.: Advertising Overflow Attack Against Android Exposure Notification System

All the papers surveyed were published between 2020 and
2021 and, although the Battery Exhaustion and Storage
Drainage attacks were already disclosed, there are no mea-
surements to quantify their impact in Android devices. Also,
none of the related works on bugs, attacks and vulnerabilities
in EN targets the exhaustion of the Bluetooth advertisement
slots.

IV. THE ADVERTISING OVERFLOW ATTACK
This section details the novel internal DoS-based attack -
the Advertising Overflow attack. Fig. 4 presents the nor-
mal operation scenario (on the left) and an attack scenario
(on the right).

FIGURE 4. Normal operation scenario (left side) and attack scenario
(right side).

In the normal operation scenario, each time EN or another
App sends a Bluetooth advertisement, it requires the system
to allocate it in an available advertising slot. The available
slots are a global resource shared between all the Apps
in the device, and the maximum capacity is dependent on
the device’s Bluetooth chip [32]. When an advertisement is
placed by an App, the App is also responsible for removing
it from the advertising slots; otherwise the Android OS will
keep advertising/transmitting it until, for instance, the user
disables the Bluetooth interface.

In the Android OS, an App can execute code when device
events occur, such as advertising when a device reboots.
To capture the event when it occurs, the App needs to imple-
ment a BroadcastReceiver class that will be executed and set
a priority for the class ranging from −999 to 999. An higher
priority means that this receiver will be executed by the
OS before others capture the same event. However, even if
an App (including EN) has a higher priority it will not be
able to place an advertisement if the advertising slots are
already occupied. The Apps are expected to handle the cases
when there are no slots available, for example, by creating an

internal buffer where advertisements will wait before trying
to place them again in the advertisement slots. The EN default
operation sets the priority to a given value different from the
maximum one) and so, the EN does not have the highest
priority access to these slots. The EN system needs, at least,
one slot available in the Bluetooth advertisements slots.

In the attack scenario depicted in the right part of the
Fig. 4, instead of having multiple Apps using advertise-
ment slots, a malicious App occupies all the available slots
in the device without releasing them, leaving no free slots
for other apps to place their advertisements. Since the
advertisement slots are a global resource shared between
all the Apps in the device, an App can occupy all these
slots whenever the device reboots, there is an EN restart
event, or during EN normal operation. If an App occu-
pies all the slots, according to the code publicly available
in [33], the EN will throw the advertisement error ‘‘ADVER-
TISE_FAILED_TOO_MANY_ADVERTISERS’’ when trying
to advertise, thrown by the AdvertiseCallback onStartFail-
ure()method. This error is defined by Google in [34] as ‘‘not
having any advertising instance available’’. After throwing
the advertisement error, the EN will drop the advertisement
and generate a newRPI to be sent. Since Android OS does not
implement a timeout to automatically remove advertisements
and the advertisement slots are only released by the App that
occupied them, if a malicious App keeps occupying slots
without releasing them, the advertisement error described
above will repeat indefinitely. Using an already installed
App with Bluetooth access, an attacker that controls an SDK
can use the Bluetooth advertising feature of the device and
start this attack unknowingly to the owner. This attack affects
the EN and any other App depending on the Bluetooth adver-
tisement slots.

V. IMPACT ASSESSMENT OF INTERNAL DOS-BASED
ATTACKS
This section presents the impact assessment of a specific cat-
egory of internal DoS-based attacks, namely, Battery Exhaus-
tion, Storage Drain, and the Advertising Overflow attacks.
The assessment on each attack was performed by using eight
smartphones of three different models as presented in Table 3.
Two devices are used as targets and the other six are used
as attackers. The Target 1 (T1) consists of a Nokia 8 model,
featuring 4GB of RAM, a Snapdragron 835 CPU, and with
an Android OS version 9 (Pie). The Target 2 (T2) consists
of a Samsung Tab A 2019 model, featuring 2GB of RAM,
a Lassen O+ CPU, and with an Android OS version 9 (Pie).
Initial tests conducted with one attacker towards both tar-
gets defined revealed no measurable impact regarding the
Battery Exhaustion and the Storage Drain attacks. Thus,
instead of using a one-to-one scenario, six attackers were
used. The six attackers are labeled as Attacker 1 to Attacker 6
(A1-6), and the set consist of Altice S23 models, featuring
1GB of RAM, a Cortex-A53 CPU, and with an Android
OS version 8.1 (Oreo). All eight devices support Bluetooth
version 5.

103370 VOLUME 9, 2021



H. Faria et al.: Advertising Overflow Attack Against Android Exposure Notification System

TABLE 3. Models and specifications for the smart phones used.

FIGURE 5. Testbed environment.

A testbed environment was set up according to Fig. 5. The
attackers have aMalicious App installed, which is an Android
App developed to send multiple simultaneous advertisements
(15 advertisements is the maximum on all devices tested),
each one containing an RPI. The generation of RPIs and
advertising settings follows the publicly available source code
for EN [33]. In both target devices the Portuguese Contact
Tracing App (Stayaway Covid [35]) was installed and the EN
was enabled in the settings. Three attacks were performed:
(1) the reception and processing of RPIs are used to check
battery discharge to measure the impact of battery exhaustion
attack; in (2) the reception and processing of RPIs are used to
monitor storage usage to measure the impact of storage drain
attack, and in (3) the use of an Internal Malicious App allows
to measure the impact of the Advertising Overflow
attack.

To collect the results, an Analyser PC was connected via
Wi-Fi to the target devices, and with the following tools
installed: Android Debug Bridge (ADB) [36] and Battery
Historian [37]. The ADB tool monitors in real time the targets
and generates bug reports and logs, providing information
about the state and tasks of the device during the tests such
as battery and CPU usage, Apps on foreground, and wake-
locks. The Battery Historian tool was used to present the
information into readable graphs and charts. A Python script

was developed to process the accumulated logs from ADB
tool and to generate statistics about the number of adver-
tisements scanned and other EN-related information such as
scan’s interval and frequency, and the errors thrown by EN.
The results are statistic data from the Battery Historian and
the Python script.

The tests are performed using a Baseline scenario, i.e.
a scenario with no attackers or Malicious Apps, which is
comparedwith anAttack scenario. Specific details and results
are presented in the following subsections. Prior to each test,
each target is rebooted, the Google Play Services and the
Stayaway Covid App cache and storage is wiped, and the
logs collection over ADB and the battery data collection is
restarted.

A. BATTERY EXHAUSTION
According to [18], an adversary can advertise either a valid
or invalid RPI to a target device. In turn, the device will wake
up and process the received RPI, these actions require energy
and imply a battery discharge.

In the testbed presented in the Fig 5, the T1 and
T2 devices were set to a normal operation mode,
using the default EN advertising interval, i.e. ‘‘INTER-
VAL_MEDIUM’’ (one advertisement around every 250ms)
and ‘‘TX_POWER_LOW’’ power level. A1-6 were set to
generate the maximum number of advertisements (15), the
advertising frequency was set to ‘‘INTERVAL_LOW’’ (one
advertisement around every 100ms) and the power level was
set to ‘‘TX_POWER_HIGH’’ (the largest visibility range for
an advertising packet).

A round of 10 tests was performed for each target, where
each test had a duration of 1 hour. Before executing each
test, the Bluetooth setting was disabled and enabled again to
trigger the first EN scan. After each test, Bluetooth is dis-
abled, and a new bug report is generated with the last hour’s
statistics. In the Baseline scenario, the attackers behave with
EN active in a regular operation. In the ‘‘Attack’’ scenario,
the attackers were deployed with a Malicious App active
around the target. For each scenario, the battery discharge
for each target was collected and Battery Historian provided
calculations for the device’s battery consumption and the
CPU usage time for the duration of the test.

The results for battery discharge (in percentage) and Blue-
tooth CPU time (in seconds) for each test, and for the T1 and
T2 are presented in Table 4, where the Baseline scenario is
represented as ‘‘B’’ and the Attack scenario, as ‘‘A’’. Aver-
age value, its standard deviation (σ ), and the ratios between
the Attack and the Baseline scenarios, were calculated. The
results of each test were plotted in Fig. 6.

The results show that the average battery discharge for T1
resulted in 0.918% for the Baseline scenario, and in 1.796%
for the Attack scenario. For T2, the average battery discharge
was 0% for the Baseline scenario and 0.918% for the Attack
scenario. The Baseline scenario for T2 resulted in a 0%
because the Android operating system could not measure
the small amount of energy taken by Bluetooth in a regular

VOLUME 9, 2021 103371



H. Faria et al.: Advertising Overflow Attack Against Android Exposure Notification System

TABLE 4. Battery discharge tests results for the T1-2 devices.

FIGURE 6. Battery consumption and bluetooth CPU usage for T1 and T2.

operation of this device.We assume that the differences of the
Baseline scenario results between T1 and T2 can be explained
by the fact that T1 is 3 years older than the other device. The
Attack/Baseline scenarios ratio for T1 was 1.956 (for T2 it
could not be obtained since Baseline was 0%). Regarding
the Bluetooth CPU usage time, the obtained ratios for T1
and T2 show an increase of 12.102 times and 8.130 times,
respectively.

B. STORAGE DRAIN
According to [18], an adversary can generate and advertise
valid RPIs that the target’s device will process and store.
In case a high number of RPIs are received, they will occupy
storage space to an extent.

In the testbed presented in the Fig 5, the T1 and T2 devices
were set to a normal operation mode, transmitting one RPI at
a time. A1-6 were set to send the maximum number of valid
RPIs to be processed and stored by the targets.

A round of 10 tests was performed for each device with a
duration of 15 minutes, which amounts to around 3 EN scans
per test. After the tests ends, the total storage space occupied

by the Google Play services folder in the device is analyzed
with a Python script. For each scenario the logs of the targets
were collected to count the total number of advertisements.

In the Baseline scenario, EN is active in all the devices in a
normal operation mode. In the Attack scenario, the attackers
have the malicious App active instead of EN, and sending
multiple advertisements to T1-2.

The results for occupied storage space (in kBytes) and total
number of RPIs received for each test, and for the T1 and
T2 are presented in Table 5, where the Baseline scenario is
represented as ‘‘B’’ and the Attack scenario, as ‘‘A’’. Aver-
age value, its standard deviation (σ ), and the ratios between
the Attack and the Baseline scenarios, were calculated. The
results of each test were plotted in Fig. 7.

FIGURE 7. Storage drainage statistics for both T1 and T2 (15 minutes test).

The results show that the average storage space occupied
for T1 for the baseline was 5.14 kB, and 188.96 kB for the
attack. For T2, the occupied space was 5.96 kB for the base-
line and 189.10 kB for the attack. The attack/baseline ratio
for the storage occupation in T1 was 36.758 and 31.726 in
T2. In both scenarios, the devices registered a similar total
number of RPIs. The baseline for both devices registered

103372 VOLUME 9, 2021



H. Faria et al.: Advertising Overflow Attack Against Android Exposure Notification System

TABLE 5. Storage occupancy tests for the devices T1-2.

between 200 and 300 RPIs. In contrast, the attack scenario
had between 8600 and 9600 registered RPIs. The total of RPIs
presented similar ratios, of 37.263 for T1 and 31.696 for T2.
When the total of received RPIs grows, the occupied storage
also increases. Internally, EN removes stored duplicates and
uses compression techniques to reduce the occupied storage.

C. ADVERTISING OVERFLOW
The Advertising Overflow attack can compromise the adver-
tising feature of the EN system since it occupies all the
advertising slots, for any given period of time.

In the testbed presented in the Fig 5, for the Baseline
scenario, EN is set active in T1-2 and in a normal operation
mode. In the Attack scenario, T1-2 ran the malicious App and
EN at the same time.

The test had a duration of 1 hour for each of the two sce-
narios, baseline and attack. Before executing each test, each
target device was rebooted and the Bluetooth was restarted
to trigger the first EN scan. For each scenario the target’s
logs were collected to analyze errors and the successful
advertisements.

The tests for the T1 and T2 are presented in Fig. 8. The
figure displays the total number of placed advertisements
during an interval of 60 minutes for the two scenarios. In both
scenarios, the advertising attempts by EN are also displayed
and have a different symbol if the attempt was successful or
not. The maximum limit of advertisements for the devices
T1-2 is 15. The figure shows both scenarios had a regular
number of advertisements throughout the test. The baseline
for both devices had one advertisement placed in a steady fre-
quency, about 4-5 minutes for T2 and 8-9 minutes for T1. The
results also show that T2 has a higher advertising frequency
than T1. During the attack scenario, both T1 and T2 had a
total of 15 advertisements placed, and no advertisements were
successfully placed by EN. The advertising attempts have a
similar frequency to ones in the baseline scenario. The errors
registered in the attack scenario did not change the frequency
of advertising attempts by EN.

FIGURE 8. Advertisements placed by EN during the baseline and the
attack tests.

VI. DISCUSSION
The tests for the selected attacks show that they have differing
levels of impact and severity.

Battery Exhaustion attack imposed a maximum discharge
of 3% during the test of one hour, using almost 2 times more
battery than the baseline scenario. Although 3% of battery
discharge in one hour can be considered as not relevant, if the
number of attackers increase, higher amounts of RPIs will be
sent, and this would increase the ratio between the baseline
and attack results, thus presenting more impact Performing
this attack with a larger volume of advertisements may gen-
erate a noticeable battery drain, especially in older devices.

The Storage Drainage attack imposed a low storage occu-
pancy when compared to the total storage mounted in the
test devices (ranging from 64 to 128 GBytes) which can be
considered not relevant. Taking into account that this attack
tries to fill the storage space of the target, the tests show

VOLUME 9, 2021 103373



H. Faria et al.: Advertising Overflow Attack Against Android Exposure Notification System

that, despite already sending 30 times more RPIs than the
baseline, it still requires more RPIs to achieve that. Also, it is
not possible to assure that the space occupied by the RPIs
will remain the same throughout the day as the compression
techniques are applied. They are not publicly available in the
reviewed documentation, so the only assurances given are
based on reverse engineering and behavior analysis.

Both Storage Drainage and Battery Exhaustion attacks
require other devices to be close to their targets. These attacks
can be successful even if their impact in software and hard-
ware is not relevant, but if they are noticeable by the EN users,
i.e. a user checking that the storage space is occupied by EN
and he might uninstall the EN-based App.

In contrast to the previous attacks, the Advertising Over-
flow attack effectively blocked advertisements from EN dur-
ing the entire test and neither the Android OS nor the EN
showed any error notification. Thus, it can be assumed that
this attack compromises the operation of any contact tracing
Apps, for any given time period. In particular, this attack
blocks the operation of any EN-based Apps such as the ones
presented in Table 1, used by over 38 million European
citizens.

The Advertising Overflow attack was reported to Google
Security Team and recognized as a bug.

To mitigate the impact of this attack the following strate-
gies can be considered:
• The advertisements from EN can be prioritized above
all other Apps. In case of a device reboot, the EN will
be able to advertise even if the attacker attempts to start
advertising;

• EN can have a dedicated advertisement slots so that
other Appswould not be able to interfere with its’ behav-
ior. This mitigation would also work in cases where an
attacker occupies all the advertising slots before the user
activates EN;

• EN can notify the user if it fails to advertise in, e.g.
3 consecutive intervals. Currently, the EN fails silently,
and the user is not aware of this failure.

The Advertising Overflow attack silently affects the effi-
ciency of digital contact tracing itself and renders the pro-
cess of uploading the TEKs useless, since no other user
will receive the respective RPIs generated. Deploying the
attack at small or larger scale will always severely impact the
efficiency of a digital contact tracing solution based on EN.

The Advertising Overflow attack was tested with a pre-
viously installed malicious App, but it can be deployed
through a SDK used by other Apps, taking advantage of an
already installed App that has Bluetooth permissions access,
as described in [31].

VII. CONCLUSION
The digital contact tracing Apps based on EN are used to aid
in the fight against COVID-19 rely on widespread usage and
data integrity to monitor the exposure of an user.

In this paper, a novel Advertising Overflow attack is pre-
sented. Using a malicious App, an attacker can block the

advertisements of EN by occupying the Bluetooth advertising
slots of an Android OS device. This attack can be conveyed
by a Malicious App or by an SDK.

This and other two DoS-based attacks (Battery Exhaustion
and Storage Drain) were tested on Android OS devices to
test and measure their impact. The Battery Exhaustion attack
presented an increase of 1.956 times the usual battery dis-
charge. Regarding StorageDrain the results show that, despite
occupying 30 to 40 times more storage space, the impact of
the Storage Drain is not relevant in overall Android OS.

Regarding the advertising overflow attack the tests show
that it can effectively stop the expected advertising behavior
of the EN and any Contact Tracing Apps depending on it.
This attack is not limited to a interval of 1 hour, as it can
disrupts the operation of EN for any given period of time and
affects also any other Apps that use Bluetooth advertisements.
The impact of AdvertisingOverflow attack can also be further
tested on other BLE features and focus on testing this attack
in the Apple iOS.

ACKNOWLEDGMENT
The Advertising Overflow attack was reported by the authors
of this article to the Google security team, who confirmed
it as a bug. They would like to thank the Google security
team for their recognition and for including the authors of the
disclosure and testing of this attack on Google Application
Security honorable mentions board.

REFERENCES
[1] S. Altmann, L. Milsom, H. Zillessen, R. Blasone, F. Gerdon, R. Bach,

F. Kreuter, D. Nosenzo, S. Toussaert, and J. Abeler, ‘‘Acceptability of app-
based contact tracing for COVID-19: Cross-country survey study,’’ JMIR
mHealth uHealth, vol. 8, no. 8, Aug. 2020, Art. no. e19857.

[2] M. Leslie, ‘‘COVID-19 fight enlists digital technology: Contact
tracing apps,’’ Engineering, vol. 6, no. 10, pp. 1064–1066,
Oct. 2020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S2095809920302484

[3] D. Skoll, J. C. Miller, and L. A. Saxon, ‘‘COVID-19 testing and infec-
tion surveillance: Is a combined digital contact-tracing and mass-testing
solution feasible in the united states?’’ Cardiovascular Digit. Health
J., vol. 1, no. 3, pp. 149–159, Nov. 2020. [Online]. Available: https://
linkinghub.elsevier.com/retrieve/pii/S2666693620300360

[4] A. M. Wilson, N. Aviles, J. I. Petrie, P. I. Beamer, Z. Szabo, M. Xie,
J. McIllece, Y. Chen, Y.-J. Son, S. Halai, T. White, K. C. Ernst, and
J. Masel, ‘‘Quantifying SARS-CoV-2 infection risk within the Google/
Apple exposure notification framework to inform quarantine recommen-
dations,’’ medRxiv, 2020. [Online]. Available: https://www.medrxiv.org/
content/early/2020/09/17/2020.07.17.20156539, doi: 10.1101/2020.07.
17.20156539.

[5] V. Iovino, S. Vaudenay, and M. Vuagnoux, ‘‘On the effectiveness of time
travel to inject COVID-19 alerts,’’ in Topics in Cryptology—CT-RSA 2021,
K. G. Paterson, Ed. Cham, Switzerland: Springer, 2021, pp. 422–443.

[6] S. Vaudenay. (2020). Analysis of DP3T—Between Scylla and Charybdis.
[Online]. Available: https://eprint.iacr.org/2020/399.pdf

[7] G. Avitabile, D. Friolo, and I. Visconti, ‘‘Terrorist attacks for fake expo-
sure notifications in contact tracing systems,’’ in Applied Cryptography
and Network Security, K. Sako and N. O. Tippenhauer, Eds. Cham,
Switzerland: Springer, 2021, pp. 220–247.

[8] S. Vaudenay, ‘‘Centralized or decentralized? The contact tracing
dilemma,’’ IACR Cryptol. ePrint Arch., vol. 2020, p. 531, 2020.

[9] (Jun. 2021).Mobile Contact Tracing Apps in EUMember States. [Online].
Available: https://ec.europa.eu/info/live-work-travel-eu/coronavirus-
response/travel-during-coronavirus-pandemic/mobile-contact-tracing-
apps-eu-member-states_en

103374 VOLUME 9, 2021

http://dx.doi.org/10.1101/2020.07.17.20156539
http://dx.doi.org/10.1101/2020.07.17.20156539


H. Faria et al.: Advertising Overflow Attack Against Android Exposure Notification System

[10] Google. (2021). Exposure Notifications API. [Online]. Available:
https://developers.google.com/android/exposure-notifications/exposure-
notifications-api

[11] J. Siva, J. Yang, and C. Poellabauer, ‘‘Connection-less BLE perfor-
mance evaluation on smartphones,’’ Procedia Comput. Sci., vol. 155,
pp. 51–58, Jan. 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1877050919309238

[12] Google and Apple. (Apr. 2020). Exposure Notification Bluetooth
Specification. [Online]. Available: https://blog.google/documents/70/
Exposure_Notification_Bluetooth_Specification_v1.2.2.pdf

[13] Google. (Sep. 2020). Bluetooth Low Energy Android Open Source Project.
[Online]. Available: https://source.android.com/devices/bluetooth/ble

[14] H.-C. Hsiao, C.-Y. Huang, B.-K. Hong, S.-M. Cheng, H.-Y. Hu, C.-C. Wu,
J.-S. Lee, S.-H.Wang, andW. Jeng, ‘‘An empirical evaluation of Bluetooth-
based decentralized contact tracing in crowds,’’ 2020, arXiv:2011.04322.
[Online]. Available: https://arxiv.org/abs/2011.04322

[15] F. Legendre, M. Humbert, A. Mermoud, and V. Lenders, ‘‘Contact
tracing: An overview of technologies and cyber risks,’’ Jul. 2020,
arXiv:2007.02806. [Online]. Available: http://arxiv.org/abs/2007.02806

[16] E. Daw, ‘‘Component-based comparison of privacy-first exposure noti-
fication protocols,’’ Cryptol. ePrint Arch., Tech. Rep. 2020/586, 2020.
[Online]. Available: https://eprint.iacr.org/2020/586

[17] K. Pietrzak, ‘‘Delayed authentication: Preventing replay and relay attacks
in private contact tracing,’’ in Progress in Cryptology—INDOCRYPT 2020
(Lecture Notes in Computer Science), K. Bhargavan, E. Oswald, and
M. Prabhakaran, Eds. Cham, Switzerland: Springer, 2020, pp. 3–15.

[18] Y. Gvili, ‘‘Security analysis of the COVID-19 contact tracing specifications
by Apple Inc. and Google Inc,’’ IACR Cryptol. ePrint Arch., vol. 2020,
p. 428, 2020.

[19] G. Avitabile, V. Botta, V. Iovino, and I. Visconti, ‘‘Towards defeating
mass surveillance and SARS-CoV-2: The pronto-C2 fully decentralized
automatic contact tracing system,’’ IACR Cryptol. ePrint Arch., vol. 2020,
p. 493, 2020.

[20] F. Buccafurri, V. De Angelis, and C. Labrini, ‘‘A privacy-preserving solu-
tion for proximity tracing avoiding identifier exchanging,’’ May 2020,
arXiv:2005.10309. [Online]. Available: http://arxiv.org/abs/2005.10309

[21] J. Huang, V. Yegneswaran, P. Porras, and G. Gu, ‘‘On the pri-
vacy and integrity risks of contact-tracing applications,’’ Dec. 2020,
arXiv:2012.03283. [Online]. Available: http://arxiv.org/abs/2012.03283

[22] P.-O. Dehaye and J. Reardon, ‘‘SwissCovid: A critical analysis of risk
assessment by Swiss authorities,’’ Jun. 2020, arXiv:2006.10719. [Online].
Available: http://arxiv.org/abs/2006.10719

[23] L. Baumgärtner, A. Dmitrienko, B. Freisleben, A. Gruler, J. Höchst,
J. Kühlberg, M. Mezini, R. Mitev, M. Miettinen, A. Muhamedagic,
T. D. Nguyen, A. Penning, D. Pustelnik, F. Roos, A.-R. Sadeghi,
M. Schwarz, and C. Uhl, ‘‘Mind the GAP: Security & privacy risks of
contact tracing apps,’’ in Proc. IEEE 19th Int. Conf. Trust, Secur. Privacy
Comput. Commun. (TrustCom), Dec. 2020, pp. 458–467.

[24] A. Gangavarapu, E. Daw, A. Singh, R. Iyer, G. Harp, S. Zimmerman,
and R. Raskar, ‘‘Target privacy threat modeling for COVID-19 exposure
notification systems,’’ Sep. 2020, arXiv:2009.13300. [Online]. Available:
http://arxiv.org/abs/2009.13300

[25] R. Gennaro, A. Krellenstein, and J. Krellenstein. (Aug. 2020).
Exposure Notification System May Allow for Large-Scale Voter
Suppression. [Online]. Available: https://static1.squarespace.com/static/
5e937afbfd7a75746167b39c/t/5f47a87e58d3de0db3da91b2/
1598531714869/Exposure_Notification.pdf

[26] S. Farrell and D. J. Leith. (May 2020). A Coronavirus Contact Tracing App
Replay Attack With Estimated Amplification Factors. [Online]. Available:
https://down.dsg.cs.tcd.ie/tact/replay.pdf

[27] A. Boutet, C. Castelluccia, M. Cunche, A. Dmitrienko, V. Iovino,
M. Miettinen, T. D. Nguyen, V. Roca, A.-R. Sadeghi, S. Vaudenay,
I. Visconti, and M. Vuagnoux, ‘‘Contact tracing by giant data collectors:
Opening pandora’s box of threats to privacy, sovereignty and national
security,’’ EPFL, Switzerland, Inria, France, JMU, Würzburg, Germany,
Univ. Salerno, Italy, base23, Geneva, Switzerland, Tech. Univ. Darmstadt,
Germany, Dec. 2020. [Online]. Available: https://hal.inria.fr/hal-03116024
and https://hal.inria.fr/hal-03116024/file/Digital_Contact_Tracing_2020-
11.pdf

[28] B.-R. Chen and Y.-C. Hu, ‘‘Mitigating denial-of-service attacks on digital
contact tracing,’’ inProc. 18th Conf. EmbeddedNetw. Sensor Syst. (SenSys)
New York, NY, USA: Association for Computing Machinery, Nov. 2020,
pp. 770–771, doi: 10.1145/3384419.3430599.

[29] M. R. Hussein, A. B. Shams, E. H. Apu, K. A. Al Mamun, and
M. S. Rahman, ‘‘Digital surveillance systems for tracing COVID-19:
Privacy and security challenges with recommendations,’’ CoRR,
vol. abs/2007.13182, 2020. [Online]. Available: https://arxiv.org/abs/2007.
13182 and https://dblp.org/rec/journals/corr/abs-2007-13182.bib

[30] F. Rowe, O. Ngwenyama, and J.-L. Richet, ‘‘Contact-tracing apps
and alienation in the age of COVID-19,’’ Eur. J. Inf. Syst., vol. 29,
no. 5, pp. 545–562, 2020. [Online]. Available: https://www.tandfonline.
com/doi/full/10.1080/0960085X.2020.1803155

[31] P.-O. Dehaye and J. Reardon, ‘‘Proximity tracing in an ecosystem of
surveillance capitalism,’’ Sep. 2020, arXiv:2009.06077. [Online]. Avail-
able: http://arxiv.org/abs/2009.06077

[32] D. Young. (Jun. 2020). BLE Advertising Fails. [Online]. Available:
https://stackoverflow.com/a/62267146

[33] Google. (2020). Exposure Notifications API Internals. Accessed:
Feb. 1, 2021. [Online]. Available: https://github.com/google/exposure-
notifications-internals

[34] (2021). Advertise Callback Android Developers. [Online]. Available:
https://developer.android.com/reference/android/bluetooth/le/Advertise
Callback#ADVERTISE_FAILED_TOO_MANY_
ADVERTISERS

[35] (Oct. 2020) Stayaway Covid App. Accessed: Feb. 1, 2021. [Online]. Avail-
able: https://stayawaycovid.pt/

[36] Google. Android Debug Bridge (ADB). Accessed: Feb. 2, 2021. [Online].
Available: https://developer.android.com/studio/command-line/adb

[37] Profile Battery Usage With Batterystats and Battery Historian. Accessed:
Feb. 2, 2021. [Online]. Available: https://developer.android.com/topic/
performance/power/setup-battery-historian

HENRIQUE FARIA received the B.S. degree
in computer engineering from the Instituto
Politécnico de Viana do Castelo, Portugal, where
he is currently pursuing the M.S. degree in cyber-
security. Since 2018, he has been a Software Engi-
neer with Atlanse, Portugal. His research interests
include analysis of vulnerabilities and exploits
in mobile devices, and the development of safe
practices in software engineering.

SARA PAIVA received the Ph.D. degree in
computer science from Vigo University, Spain,
in 2011. She is currently a Postdoctoral Researcher
with the SMIOT Group, Oviedo University.
She is an Assistant Professor with the Instituto
Politécnico de Viana do Castelo, Portugal and a
Researcher with Algoritmi. Her research interests
include applied mobile computing and mobility
in smart cities. She is currently the Vice-Chair of
the IEEE Smart Cities Marketing Committee and

the General Co-Chair of the EAI Convention on Smart Cities 360◦, since
the 2020 edition.

PEDRO PINTO received the M.S. degree in
communication networks and services from the
University of Porto, Portugal, in 2007, and the
Ph.D. degree in telecommunications jointly from
the Universities of Minho, Aveiro, and Porto,
Portugal, in 2015. He is currently an Assistant
Professor, the Director of theM.S. degree in cyber-
security, and the Data Protection Officer with
the Instituto Politécnico de Viana do Castelo,
Portugal. His research interests include areas of

computer networks, data privacy, and cybersecurity. He is also a member
of the INESC TEC Research Institution.

VOLUME 9, 2021 103375

http://dx.doi.org/10.1145/3384419.3430599

