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Simple Summary: The welfare of farm animals is a growing concern in the EU and across the world.
In milk production, there is a strong need to assess the welfare of dairy cows. One of the most sound
assessment initiatives has been practiced using protocols developed by the Welfare Quality project.
These protocols mainly support the assessment of cow welfare with animal-based indicators.
However, evaluating these indicators is time-consuming and expensive, so using precision livestock
farming (PLF) solutions is a way forward and is becoming a reality in the dairy industry. This
review presents advances in PLF solutions, particularly in the last five years, and for assessing the
animal-based indicators of lameness, mastitis, and body condition in dairy cattle farming.

Abstract: Specific animal-based indicators that can be used to predict animal welfare have been the
core of protocols for assessing the welfare of farm animals, such as those produced by the Welfare
Quality project. At the same time, the contribution of technological tools for the accurate and real-
time assessment of farm animal welfare is also evident. The solutions based on technological tools
fit into the precision livestock farming (PLF) concept, which has improved productivity, economic
sustainability, and animal welfare in dairy farms. PLF has been adopted recently; nevertheless, the
need for technological support on farms is getting more and more attention and has translated into
significant scientific contributions in various fields of the dairy industry, but with an emphasis on
the health and welfare of the cows. This review aims to present the recent advances of PLF in dairy
cow welfare, particularly in the assessment of lameness, mastitis, and body condition, which are
among the most relevant animal-based indications for the welfare of cows. Finally, a discussion is
presented on the possibility of integrating the information obtained by PLF into a welfare
assessment framework.

Keywords: dairy cows; welfare; precision livestock farming; lameness; mastitis; body condition
score; behavior; infrared thermography

1. Introduction

Animal welfare has long been considered a high priority within the European Union
(EU), with several legislative initiatives from the late 1980s to the present day [1]. In
parallel, the EU has invested significantly in research into farm animals’ welfare as part
of a policy-oriented approach to identifying ways to improve animals’ lives [2,3]. Animal
evaluation is an essential part of improving the standard of animal welfare. In this sense,
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efforts have been made to research science-based welfare indicators as assessment tools
[4]. For example, the Welfare Quality® project contributed with protocols to assess animal
welfare in cattle, pigs, and poultry [5,6]. A few years later, the AWIN® project produced
indicators for species not considered in Welfare Quality®, namely horses, donkeys,
turkeys, sheep, and goats [7]. However, there are many practical challenges in applying
these protocols, which prevent them from having the maximum impact on the quality of
life of farm species [8-10]. Nevertheless, the developments achieved in the last two
decades in precision livestock farming (PLF), with close collaboration between researchers
associated with engineering and the livestock sector, have driven a significant evolution
in animal welfare assessment. PLF has developed rapidly in recent years, and animal
welfare can be objectively assessed in real-time using a wide variety of indicators [11].
This assessment of welfare indicators is already possible, and it is expected to undergo
extraordinary progress in the near future for livestock production. This will require the
use of the latest developments in information, communication, and sensor technology
[12]. Monitoring the welfare of cows, their productivity, and management practices is
achievable through data from image, sound, and movement sensors that are combined
with algorithms [13,14]. At the moment, there is robust knowledge that points to the
possibility of monitoring and evaluating welfare automatically and with outputs that can
be integrated into welfare protocols [11,15,16]. Additionally, an appropriate data
visualization is necessary, so that farmers have a good acceptance of and efficiently use
the technologies in PLF solutions [17].

In this review, an analysis will be made of the recent work of PLF in evaluating
lameness, mastitis, and body condition, which are considered welfare indicators for dairy
cows. It was also the objective of this review to point out future perspectives for PLF
solutions, to automatically include animal-based indicators in a dairy farm welfare
framework, allowing for the creation of better welfare for the animals and value for the
farmer.

2. Welfare of Dairy Cows and Precision Livestock Farming

Currently, there are three welfare evaluation systems for dairy cattle, farmers
assuring responsible management in USA [18], the code in New Zealand [19], and welfare
quality in Europe [20]. The latter system has been seriously disputed in several reports
[21-23], which presented several suggestions for reducing the number of evaluated
parameters to overcome the time-consuming observations, which is a constraint that
limits its routine application in dairy farms. In addition to shortening the assessing
procedures, the method of calculating the scores was also changed and made more
flexible, so that measures may be substituted or added as considered appropriate [22].
Another welfare evaluation system in development, according to Krueger et al. [24], is the
integrated diagnostic welfare system (IDWS). This system might address some of the
shortcomings of the other three systems, because it uses technology to help farms in the
evaluation of animal welfare and to identify any causes of poor welfare. However, a
considerable amount of data and records are needed to record animal behavior, health,
and welfare conditions; and the use of sensors and technology can help in this matter [25].
According to Knight [26], research on dairy cow sensors has been very dynamic for
assessing lameness, mastitis, and body condition, which will be the focus of this work.
However, the application of sensors is extended to many other targets, such as aspects of
reproduction (e.g., estrous cycle and parturition), nutrition, health, and general
management. In this way, the main monitoring systems in dairy farms provide
comprehensive information in different areas and demonstrate their suitability and
feasibility for application on the dairy farm [25].

2.1. Lameness

Lameness is ranked as the third most important cause of economic losses on dairy
farms, after mastitis and reproduction disorders. Lame cows are more frequently affected
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by mastitis, metabolic disorders, and reduced fertility [27]. In dairy cows, lameness can
vary significantly in severity and can arise weeks, or even months, after a metabolic
disorder, making the detection of causality complex [28]. Lameness is mainly detected at
an advanced stage and thus requires immediate and often costly treatment. Once an
animal becomes lame, it can take several weeks to recover, thus representing a high cost
to dairy farmers in terms of time, financial expenditure for veterinary calls, medication,
and treatment [29]. Time constraints for dairy farmers are an essential factor contributing
to the under-detection of lameness, resulting in delayed or missed treatment of lame cows.
Hence, a need exists for flexible and affordable cow-based sensor systems capable of
recording behaviors such as time spent feeding, which may be affected by the onset of
lameness [30]. Lameness management consists of both prevention and treatment.
Prevention management is linked with factors that are associated with lameness, such as
improving walking surfaces, nutrition, and genetics. For a lame cow to be treated, it must
first be identified as lame by the farmer. This generally occurs in three ways. The first is
using a locomotion scoring system to systematically assess the herd [31]. The second is
routine hoof trimming. Here, legs are lifted, inspected, and, if required, treated [32]. The
third and most common is ad hoc observation during other activities, such as herding.
Unfortunately, ad hoc detection is ineffective at detecting mild and even moderate
lameness.

Automated lameness detection could provide useful cow and herd information
addressing an information gap, particularly for mild and moderately lame cows. Earlier
detection and automatic drafting could reduce the time from lameness onset to treatment,
preventing cases from becoming severe, speeding up recovery, increasing production,
and improving welfare [33]. In addition, lame cows tend to spend less time eating, with
shorter bouts, and eat less during the day [34,35]. Automated lameness identification costs
may be prohibitive, depending on the system. Nevertheless, to increase the cost-
effectiveness of automatic systemes, it is necessary to proceed with the downscaling of the
current systems to increase the sensor detection performance and further enhance the
system for other physiological states such as estrus, disease, calving, or body condition
score (BCS) [36]. The single accelerometer per cow approach is particularly promising
from a cost perspective, but several hurdles remain before such technology can be widely
adopted on the farm. The foremost of these is developing reliable indicators of lameness
using only one low or medium resolution pedometer. According to Schlageter-Tello et al.
[37], most automatic locomotion scoring systems attempt to mimic human observers by
measuring and analyzing cows’ locomotion and behavior parameters through sensors
and mathematical algorithms. The technologies employed can be grouped into kinematic
(pressure plate/load cell solutions, image processing techniques, and activity-based
techniques); kinetic (ground reaction force systems, force-scale weighing platforms, and
kinetic variations of accelerometers); and indirect methods, which mainly include
behavior technologies and individual cow milk production measuring technologies.

2.1.1. Pressure Plate/Load Cell

In pressure plate/load cell solutions, the aim is to examine how the weight is
distributed across the legs of the animal as it walks through pressure-sensitive equipment.
Stance time asymmetry, as measured by a Gaitwise pressure sensor [38], and three-
dimensional force plate measurements of hind legs [39] have been identified as
approaches for identifying cow lameness. Van Nuffel et al. [40] reported that stride length
(meters) and duration (seconds) were indicative of lameness using the Gaitwise pressure
mat system. Using the Gaitwise system, stance time (weight-bearing) for the non-lame leg
was also found to be longer in lame cows [31]. Lame cows are cautious about placement
of the affected foot, as this action is painful [41]. These authors reported that the duration
of foot placement and foot lifting was relatively longer for lame cows. The disadvantage
of the Gaitwise system compared to other image-based systems is the larger space needed
for installation and the system cost. To reduce the cost, 14 configurations were studied to
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simulate the effects of decreasing mat length and sensor resolution [41]. The results
showed that the length can be reduced by about 33% (4.88 to 3.28 m), while the
downscaling of the sensor resolution by up to four times the original resolution was
possible without decreasing the lameness detection performance for successfully
monitoring one complete gait cycle [41]. Table 1 reports a summary of research work for
assessing the lameness of dairy cows by kinematic and kinetic approaches.

Table 1. Summary of research work for assessing lameness of dairy cows by kinematic and kinetic approaches.

Results

Approach LS n Locomotion Test Layout SE(%) SP(%) Accuracy (%) Ref
Kinematic
Gaitwise 13 159 Alley 0.61 m wide and 4.88 m long 7690  86-100 [42]
Gaitwise 1-3 40 Active surface of 0.61 m wide and 4.88 m long [43]
Gaitwise 1-3 36 Active surface of 0.61 m wide and 4.88 m long 88 87 [38]
Gaitwise-14 configurations  1-3 45 55-61 [41]
3D Accelerometer 1-5 17+21 80-100 100 AUC=0.87-1 [44]
Kinetic
3D Accelerometer 1-5 12+36 Passageway (13 m long x 1.3 m wide) >60 [45]
3D Accelerometer 1-5 17 100  75-83.3 AUC=0.92-0.97 [44]
3D Accelerometer 1-5 21 83-91.7 66.7-83.3 AUC =0.85-0.87 [44]
3D Accelerometer 1-5 348 Leg-mounted accelerometer [46]
Ground force reaction 1-5 610 Stepmetrix system 35 85 - [47]
Ground force reaction 1-5 83 Two parallel force plates 90 93 AUC=0.98 [48]
Ground force reaction 1-5 105 Four-force plate-balanced system 50-100 91-100 - [49]
Ground force reaction 1-5 95 Weight distribution of 4 limbs in milking robot 62-75 [50]
Ground force reaction 1-5 261 Two parallel force plates cow walks over 100 100  AUC=0.70-0.99 [51]
Ground force reaction 1-5 346 Two parallel force plates cow walks over 52 89 [52]
Ground force reaction 1-5 43 Four sensor weight distribution of 4 limbs in milking robot [53]
Ground force reaction 1-5 31 Two parallel force plates 0.84-0.63 [54]
Ground force reaction 6 Two parallel floor-plates plus SoftSeparatorTM [55]
Ground force reaction 1-5 9 Two parallel 3D strain gauge force plates 0.46 m x 2.07m  91-97 [56]
Ground force reaction 6  Two parallel floor-plates loading platform-126 x 122 x 18 cm [57]
Load cells and platform 1-5 57 Four force plates cow stands on AUC=0.64-0.83 [58]
Load cells and platform 1-5 57 Four force plates cow stands on AUC=0.67 [59]
Load cells and platform  0-13 42 Platform with 4 independent sealed load cells 7597 6090 AUC=0.84-0.87 [35]
Load cells and platform 1-5 16 Four-force plate-balanced system [60]
Load cells and platform 1-5 73 Four force plates cow stands on 100 58 86-96 [61]
Motion sensor 10 Motion sensor attached hind left limb 74.2 91.6 91.1 [62]
Motion sensor 65 Dairy cow individual sensor AUC=0.71 [63]

LS, locomotion score; n, number of cows; SE, sensitivity = True Positive/(True Positive+False Negative) x 100; SP,
Specificity = True Negative/(True Negative + False Positive) x 100; AUC, area under the curve; Ref, reference.

2.1.2. Image Processing Techniques

Image processing techniques analyze the posture of the animal as it walks through
an alley or to a milking parlor. Remote sensing solutions such as 2D or 3D video cameras
have excellent potential as lameness monitoring systems. However, there are challenges
when developing algorithms for such devices, as one algorithm has to work for multiple
animals even though individual cows have their specific way of walking and their
lameness is expressed in a particular way. To meet this challenge, real-time lameness
detection systems must account for the normal healthy behavior of the cow so that
abnormalities can then be picked up quickly. Such an approach requires maximizing the
usage of historical and real-time data. Individualized monitoring systems using animal-
level historical data have achieved better detection accuracy than population-based
monitoring systems. Back posture values, automatically extracted from top view 3D
images of the cows’ back, are used to measure the degree of lameness [64]. One back
posture value can indicate lameness for one cow but soundness in gait for another. This
individual cow variation has already been pointed out in previous research and confirms
that back posture values should be analyzed and interpreted at an individual cow level
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and that a healthy reference should be calculated for each cow separately [65]. In addition,
to overcome the inaccurate detection of lameness due to the individual characteristics of
cows, Kang et al. [66] successfully studied (accuracy of 96%) a lameness detection method
based on the supporting phase using computer vision. Van Hertem et al. [64] achieved a
high specificity of 94.1%, which means that their algorithm generated minimal false
alarms, a very desirable trait in lameness detection systems. Table 2 summarizes the
research works assessing the lameness of dairy cows using 2D and 3D sensors.

Table 2. Summary of research works assessing the lameness of dairy cows using 2D and 3D sensors.

Image Equipment

LS n Setup Results Reference
SE (%) SP (%) Accuracy (%)

2D
Canon Powershot A620
Guppy F-080C and Guppy F-036C
Guppy F-080C
Video Canon PAL MV690
Cannon 60D
Nikon D700
Nikon D7000
Web camera Hikvision
Panasonic DC-GH5S
Panasonic DC-GH5S
3D
Microsoft Kinect
Microsoft Kinect
Microsoft Kinect
Microsoft Kinect
Microsoft Kinect

1-3 28 Alley (1.2 m wide and 6 m long) >96 [67]
1-3 66 Alley (1.2 m wide and 6 m long) >96 [67]
1-3 75 Pressure mat (1 m wide and 6 m long) [68]
1-5 60 Alley (1.6 m wide) electric fence posts [69]
1-5 90 Alley (1.5 m wide and 7 m long) 76 [70]
1-5 8 Alley (1.5 m wide and 7 m long) 91 [70]
1-5 273 Alley (1.1 m wide and 6 m long) 76-88 95-97 91-96 [71]
1-3 98 Alley (2 m wide and 7 m long) 90.25 94.74 90.18 [72]
1-3 100 Alley (1.2 m wide and 4 m long) 93-96 96 [66]
1-3 100 Alley (1.2 m wide and 4 m long) 93-96 [66]
1-5 186 3.20 m above ground level 55 90.9 [64]
1-5 273 3.15 m above ground level 82-88 91-95 90-96 [71]
1-5 242 3.45 m above ground level 68.5 87.6 79.8 [73]
1-5 242 3.45 m above ground level 70-72 [74]
1-5 270 3.45 m above ground level 74-72 60.2 [37]

LS, locomotion score; n, number of cows; SE, Sensitivity = True Positive/(True Positive + False Negative) x 100; SP,
Specificity = True Negative/(True Negative + False Positive) x 100.

2.1.3. Activity-based Techniques

Activity-based techniques typically use accelerometers (2D and 3D) to record the
movement patterns of the animal. The data is then used to build the daily activities of the
cow, e.g., walking and lying down. Westin et al. [75] concluded that only a small
proportion of variation in lying time could be explained by lameness. In aggregate,
measures of lying time are not reliable indicators of lameness, partly because lying time
is influenced by many factors other than lameness. For these reasons, further research
focusing on measures of lying time alone to support automated lameness detection is
unlikely to be successful. Beer et al. [76] reported relatively accurate lameness detection
based on an accelerometer-based estimation of speed, stride length, and duration, and
reported that lame cows walked more slowly and with shorter stride lengths than non-
lame cows, using data from only one 10-Hz accelerometer per cow. A sensitivity of 90.2%
and a specificity of 91.7% were reported using both gait and behavior measures.
Measuring acceleration at the level of the metatarsus, using two accelerometers with a
high sampling rate (400 Hz) attached to both hind limbs, is a promising tool for exploring
the acceleration of the lateral claw indirectly, and for accurately describing the different
gait cycle variables [44]. The first accelerometer-based automated lameness detection
system was marketed by IceRobotics (Edinburgh, UK) in 2017 [77], and locomotion
scoring also was marketed. The system is based on a single low-resolution accelerometer
per cow. The system presents users with the probability that a cow is lame using a traffic
light system. Cows that are likely to be non-lame are green, those that may be lame are
yellow, and those likely to be lame are red [77]. This approach is different from those seen
in the literature, but may be an appropriate solution for communicating information with
less than perfect accuracy to farmers. Another lameness detection system that shows a
good trade-off between sensitivity and specificity is the combination of different sensor
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data, including milk yield, neck activity, and rumination time, which can perform with a
sensitivity of 89%, a specificity of 85%, and an accuracy of 86% [64].

2.1.4. Behavior of the Cows

Behavior assessment has played a huge role in evaluating animal welfare [78,79],
including for dairy cows [80-82]. Since behavior assessment can be a long-term task, the
use of technology is crucial [16]. Change in an animal’s behavior is one of the most
important criteria in assessing animal welfare and health. For example, pain associated
with claw or limb disorders causes alterations in gait characteristics and a decreased daily
activity level [76]. Additional placement of different sensor types in the same body
location (e.g., rumination audio sensor, magnetometer) or an additional accelerometer in
an alternative body location (e.g., leg-mounted) would likely be needed to accurately
classify the three main behaviors of interest in dairy cows (lying, standing, and feeding)
[30,83]. Analysis of the classified behavior highlights differences in feeding activity, with
feeding duration being significantly lower for lame cows than non-lame cows. The results
highlighted how automated collection of behavioral data via a combined position and
activity sensor could potentially form part of an on-farm health and welfare monitoring
tool [30]. The accelerometers can provide an indirect measure of the flinch, step, and kick
(FSK) response. This information, combined with remote sensing of FSK, and integrated
into existing systems where other production and behavioral information is available
(e.g., the number of visits, feed intake, milk yield), could provide a non-invasive, real-time
assessment of animal health and welfare. Combined with other data using infrared
thermography (IRT), an automated system may be able to identify animals with the early
onset of pathological or metabolic diseases and distress or discomfort, allowing an early
intervention by the farmer and improving animal health, production, and welfare [83,84].

2.2. Mastitis

Mastitis is one of the most common diseases in dairy cows and causes suffering in
affected animals, which has well-recognized detrimental effects on welfare and dairy farm
profitability [85,86]. Therefore, since the beginning of modern dairy farming, producers
have sought effective methods to minimize mastitis in their herds. The development of a
control program incorporating post-milking teat dipping, hygienic milking procedures,
and strategic use of antibiotic therapy in dry-off resulted in widespread control of
contagious pathogens. However, as mastitis pathogens have evolved, researchers have
sought to control antimicrobial usage to maintain animal wellbeing, while minimizing
unnecessary usage. Thus, despite remarkable advances in mastitis control during the last
decade, mastitis will remain an important focus of future research [87].

Efficient mastitis detection provides an opportunity to implement early and adequate
treatment protocols and avoid excessive use of antibiotics, maintaining good animal
health and welfare by reducing pain and discomfort, enhancing recovery rate, and
improving economic returns to farmers [88,89]. Effective diagnostic methods can lead to
faster and more efficient mastitis control and promote responsible use of antimicrobials
[90]. It is also essential to reliably score the severity of clinical mastitis to predict treatment
outcomes [91] and adapt treatment protocols accordingly.

2.2.1. Somatic Cell Count (SCC)

Management of udder health is essential for maintaining efficient and sustainable
dairy production. Somatic cell count (SCC) is a widely used indicator of udder health
status in dairy cows and is used at the quarter, cow, and bulk-tank levels. In automatic
milking systems (AMS), fully automated online analysis equipment is available for on-
farm analysis of SCC at every milking [92]. In addition, from online cell counter results,
an array of additional cow level and quarter-level factors considered important for udder
health is recorded in these systems [93]. The SCC can, to some extent, be used for the
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surveillance of intramammary infection, and the industry has advanced toward
developing new sensors that are designed explicitly for udder health surveillance. One of
these is the DelLaval Online Cell Counter (DelLaval, Tumba, Sweden), which allows
repeated measurements of cell counts at the cow level. These may be implemented in
automated detection systems to manage udder health in AMS [94]. This represents a
substantial increase in the amount of data, e.g., for udder health management, and which
may also serve as phenotypes for breeding programs. In addition to frequent
measurements of SCC, a whole array of additional cow-level and quarter-level factors
considered of importance for udder health are recorded in the AMS at every milking [95].

2.2.2. Electrical Conductivity and Lactate Dehydrogenase

Electrical conductivity (EC) and enzymatic concentrations of lactate dehydrogenase
(LDH) have been used as indicators to detect mastitis [96,97]. Recent works have shown
the potential of using sensors for automatic measurement of EC and LDH; however, the
results showed that there is still a need for further research in this field [95]. Currently, an
increasing number of dairy farmers worldwide choose AMS, which allow farmers to
maximize milking frequency, potentially milk production per cow, and minimize labor
costs [98]. In AMS, the sensors that measure EC are the in-line sensors most commonly
used to detect mastitis. These sensors can continuously measure the concentration of ions
in milk during the milk harvesting process, albeit with variable results [99]. Foremilk
sampled before milk ejection was more sensitive for detection of mastitis than foremilk
harvested after milk ejection; due to udder preparation, including teat cleaning in AMS
systems. In addition, both LDH activity and milk protein contents were higher in quarters
with Gram-negative coliform mastitis than in quarters with mastitis caused by Gram-
positive bacteria. These results suggest that, in the future, sensors could be modified to
monitor milk removed before teat cleaning, to improve the ability of AMS to detect
mastitis [99].

2.2.3. Infrared Thermography

Infrared thermography (IRT) is a non-invasive technology that allows accurate
temperature measurement from a distance with a wide application in animal science
[100,101]. In dairy production, IRT has been successfully used for early mastitis detection.
Despite the proven ability to detect mastitis, there are limitations in the manual analysis
of animals because this is time-consuming and requires a skilled examiner [102]. Zaninelli
et al. [103] used software that located the pixel with the highest temperature in udder
thermograms to distinguish between cows with normal and elevated SCC. Automatic
evaluation of thermograms of bovine udders that received an intramammary challenge
with E. coli showed promising results for detecting clinical mastitis, and these results were
valid compared with the current gold standard of manual evaluation. We presume that
the higher temperatures observed using manual analysis occurred because warmer
regions were included, such as the udder-thigh cleft, whereas automatic segmentation
omits these regions [102]. This method may also detect changes in the inner core
temperature, such as fever. However, infrared thermography is intended for use as an
automatic health surveillance tool and should not replace the examination of individual
animals [104].

2.3. Body Condition Scoring

Body condition is a significant welfare and herd management indicator. Body
condition is in high correlation with the health and metabolic status of the dairy cow and
also with milk composition during lactation [105]. Body condition assessment is an
indirect appraisal of the level of body reserves, and deviations reveal aggregate variation
in energy balance [106,107]. The routine evaluation of body condition is based on visual
observation and palpation of specific body areas to determine a score that assesses the
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adipose tissue and muscle mass deposits [108]. This assessment approach, generally
known as the body condition score (BCS), has justified attention as a relevant tool for
managing dairy herds [109].

BCS can be done using only visual indicators or a combination of visual and tactile
estimation of key bone structures for fat cover. The key areas or body parts for BCS
assessment are the backbone, pins, tail head, long ribs, short ribs, hips, and rump [105].
Over the years, different scoring scales have been developed around the world. For
example, in the USA, a five-point scale system, proposed by Windman et al. [110], was
commonly used, where BCS value varies from 1 to 5. Ferguson et al. [111] proposed a scale
of 0 to 5, subdivided into 0.25 centesimal, which assesses the body condition, particularly
the adipose tissue of the cow’s lumbar and pelvic areas. Despite the general agreement of
dairy producers, nutritionists, and herd managers about the benefits of BCS evaluation,
some factors discourage the use of traditional BCS evaluation techniques [112]:
subjectivity in judgment can lead to different scores for the same cow under consideration,
and the complex and time-consuming on-farm training of technicians [107]. Moreover, to
have valuable information, cow measurements must be collected every 30 d throughout
the lactation cycle [113], thus increasing the cost and complexity of collecting BCS data.
To overcome these limitations, several solutions have been developed within the scope of
the PLF that have shown very encouraging results. The most interesting solutions utilize
image capture and analysis as vision-based body condition scoring systems, which
somewhat mimics the traditional BCS assessment. Another imaging approach that has
been used to measure body and carcass composition is ultrasound [114]. This technique
has been widely used to monitor body condition in small ruminants [115,116], in swine
[117], and in cattle [118]. For dairy cows, recent studies [119,120] showed the relevance of
using ultrasound to assess the body reserves of cows with ultrasonic measurement to scan
the body regions that are connected to the BCS evaluation, such as the ribs, pin, tail-head,
and lumbar spine. However, despite the high accuracy for BCS prediction, the cows must
be individually restrained to capture the ultrasound images, making this technique less
suitable for analyzing large numbers of animals in multiple sessions over time. Therefore,
this method is not appropriate for larger-scale farms with hundreds of animals.
Consequently, the ultrasonic technique is reserved for punctual analyses or validation of
other methods, such as those supported by cameras, where it is possible to obtain a BCS
evaluation of animals in motion [121,122].

Vision-Based Body Condition Scoring Systems

Recently, a variety of vision-based solutions for BSC monitoring have been
developed and tested, such as thermal imaging [121], 2D imaging [123], and 3D imaging
technology [124,125]. Data analysis approaches have been applied to monitor the
development of sensors, which increase the developed systems’ capacity, with examples
such as Fourier transformation [123] and machine learning [126]. However, despite the
advances already made, there are still limitations to fully automated solutions.
Nevertheless, with the development of cameras and software we are approaching
objective and automatic BCS. The vision-based solutions remove the guesswork and
imprecisions of conventional scoring, while the efficiency can be significantly improved.
These reasons are certainly the basis for developing equipment that is well accepted by
producers [127]. Table 3 summarizes research work assessing cow body condition score
using 2D and 3D sensors.

Over the last decade, several researchers have focused their work on approaches with
2D cameras, but especially in recent years, attention has focused on 3D sensors, which
have been widely applied to measure the energy reserves of dairy cattle [128]. 3D sensors
have very different costs and typically use the time-of-flight (TOF) principle [129]. Several
researchers, including Weber et al. [130], Spoliansky et al. [131], Alvarez et al. [132],
Shigeta et al. [133], Hansen et al. [134], and Song et al. [135], used 3D sensors such as
Microsoft Kinect or Asus Xtion2, which are related to gaming activities, and, therefore,
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aimed at reaching a vast market with a consequent decrease in sensor cost. Even so, 3D
cameras are generally expensive, particularly those not incorporated in commercial
solutions, which is understandable as the latter are subject to very challenging
environments, which requires, in addition to the quality of the sensors, robust waterproof
and dustproof equipment.

Table 3. Summary of research work assessing cow body condition score using 2D and 3D sensors.

Sensor n Sensor Position Accuracy Accuracy within BCS Points Deviation (%) Referenc
0 0.25 0.5
2D Sensors
Black-and-white 2571 60 to 70 cm above the cows’ backs 93 100 [136]
AXIS 213 PTZ 286 3 m above ground Error=0.31 [112]
InfraCAM SD Flir 186 3.1 m above ground. Exit milking parlor R=94 [121]
Nikon D7000 DSLR 151 Still camera-milking parlor R2=77 50 100 # [123]
Sony, DCR-TRV460 46 3 m above ground R2=90 [137]
Hikvision DS-2CD3T56DWD-I 8972 2.6 m the ground. Milking passage R2=98.5 [105]
Hikvision DS-2CD3T56DWD-1 2231 Cows walk below the camera 65 95 [128]
3D Sensors
Mesa 3D ToF 40 Hand-held setup 79 100 [138]
SR4K time-of-flight 540 Above electronic feeding dispenser R2=89 [139]
ToF MESA SR4000 1329 Above DeLaval AWS 100 R=84 [140]
Asus Xtion Pro 95 1.5-2m above the cow R2=93.3 [141]
Asus Xtion Pro 82 2 m above ground R=96 [142]
Asus Xtion Pro 27 80 cm on cow’s surface R2=74 [143]
PrimeSense™ Carmine 116 1.5 m from the cows’ backs 71 94 [144]
Microsoft Kinect v1 20 2.5 m above platform 91 [131]
Microsoft Kinect v2 1661 2.8 m above ground-milk parlor 40 78 94 [145]
Intel Realsense SR300 44 2.3 m above the platform R2=72 [135]
Intel RealSense D435 480 3.2 m above ground 77 98 [146]
Microsoft Kinect v2 1661 2.8 m above ground-milk parlor 82 97 [132]
Microsoft Kinect v2 53 2.5 m above the ground R2=63 [124]
Microsoft Kinect v2 38 3 m above the ground 56 76 94 [125]
3D ToF 52 3.4 m above ground-rotary parlor MAPE =3.9 [147]

n, number of cows; ToF, time of flight; BCS, body condition score; R, correlation coefficient; R?, coefficient of determination;
MAPE, mean absolute percentage error; #, accuracy within 0.75 BCS points deviation.

Making systems automatic is a necessary step to gain the interest of producers and
thus turn the systems into a commercial business. To date, there are four automated BCS
systems on the market [148]. All four systems use approaches based on image analysis
captured from a 3D sensor placed on a higher plane of the rump and lumbar regions of
the cows [148]. This is also the most common approach in non-commercial 3D and 2D
solutions (Table 3). The commercial automatic BCS systems are DeLaval BCS (DeLaval
International AB, Tumba, Sweden), BodyMat F (Ingenera SA, Cureglia, Switzerland),
Biondi 4DRT-A (Biondi Engineering SA, Cadempino, Switzerland), and Protrack® BCS
(LIC Automation, Hamilton, New Zealand). The first commercially available system was
the DeLaval BCS based on 3D image processing technologies; it was designed in 2015 by
DeLaval Corporate [131]. The system operates while the cows move through a fixed point
in the barn or on the DeLaval VMS™. The concept has made it feasible to incorporate BCS
into herd management. The 3D camera is linked to a radio-frequency identification (RFID)
system, which allows continuous monitoring of BCS and the use of this information in
herd management systems [108]. A validation study has been conducted to examine the
performance of the DeLaval BCS system [149]. This system was found helpful for
automated monitoring of BCS variation. Moreover, the BCS camera system was reliable
for cattle scored within the range of 3.00-3.75, where most cattle on the tested farm
belonged, but did not score accurately with less than 3.00 and above 3.75. Furthermore,
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recently, an independent review of the BodyMatF BCS system has been published [148].
This work reached results similar to those obtained in the previous work, and allowed
concluding that the automated and non-subjective nature of the BodyMatF system,
combined with the ease of collecting regular scores, make this system likely to be of value
in commercial and research contexts to evaluate Holstein-Friesian cow body condition.
This technology can serve as a consistent source of BCS scores, which can be included in
management processes and in the welfare assessment protocols. BCS has been included
in the Welfare Quality protocols as an animal-based indicator linked to animal feed [150].
Similar to what is already in practice for other species (e.g., EyeNamic for Poultry and
Swine [16]), PLF technologies have proven to be a step forward in the individual
assessment of cows by continuous real-time monitoring of health and welfare [13,151].

3. The Potential of PLF for Assessing Welfare Animal-Based Indicators of Dairy Cattle

The assessment of the welfare of dairy cows, as well as other farm animal species
involves audits that are time-consuming and expensive, as welfare is a complex
multidimensional phenomenon [150]. On the other hand, with the advances that have
been made in recent years in the use of sensor technologies, the main objective of PLF,
which is the continuous real-time on-farm monitoring of individual animals to improve
production/breeding, health and welfare, and environmental sustainability, is already
being fulfilled in various aspects of dairy cattle production [151]. Regarding dairy cattle
welfare assessment, as is the case with the Welfare Quality® protocol, its application has
meaningful constraints, as its application is very time-consuming [22] and lacks
correspondence with trained users on the importance of several welfare measures [152].
In addition to reducing the evaluation time, several authors proposed some changes to
the calculations, such as the one reported by Van Eerdenburg et al. [21] for drinking water.
Moreover, the welfare calculations require more flexible methods, especially for the
overall score [22,152]. That is why the possibility of applying PLF solutions to assess the
animal-based indicators of lameness, mastitis, and body condition presented in this
review will be very welcome. The advances discussed show that several PLF solutions
have been developed and validated in recent years, and that is why there is the capacity
to address the three animal-based indicators mentioned by commercial PLF technologies.
Moreover, a recent review [12] pointed out that it will be necessary to modify some of the
protocol criteria to take full advantage of the continuous measurement and individual
monitoring of cows. This modification can rely on animal-based welfare measures, such
as those analyzed in this paper and others, as suggested by Tuyttens et al. [22], who
reviewed the Welfare Quality Protocol and found a more user-friendly, more time-
efficient approach for assessing dairy cattle welfare, with the inclusion of only six animal-
based indicators. There should also be room for other farm animal welfare frameworks,
such as the five domains model [150]. The five domains model has gained interest among
farm animal welfare researchers and has also been included in discussing the potential of
applying the PLF to this model [153]. With the evolution of PLF solutions, the real-time
monitoring of cow welfare supported by animal-based indicators is now undoubtedly
feasible. Therefore, current scientific knowledge and technological development (e.g.,
Stygar et al. [13]) foresees important PLF developments in the near future, which will
widen opportunities for assessing and improving the welfare of dairy cows.

4. Challenges for the Future

Precision livestock farming is recognized as fundamental for future dairy producers,
allowing the continuous monitoring of the health and welfare of animals in production.
In this review, the progress of exploiting technology for monitoring lameness, mastitis,
and body condition in dairy cows is evident. For these problems, identified as animal-
based indicators, accurate continuous monitoring systems, which avoid false alarms, are
necessary for farmers to trust and adopt these technologies. Furthermore, to assess the
welfare of dairy cows, a detailed early warning system is essential to prevent the
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development of more severe diseases and welfare problems. Finally, research into
technology that ensures the welfare of dairy cows has provided several indicators that
could be automatically measured and integrated into an assessment system.
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