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Oxidative stress plays a central role in physiological and pathological bone conditions. Its
role in signalment and control of bone cell population differentiation, activity, and fate is
increasingly recognized. The possibilities of its use andmanipulation with therapeutic goals
are virtually unending. However, how redox balance interplays with the response to
mechanical stimuli is yet to be fully understood. The present work summarizes current
knowledge on these aspects, in an integrative and broad introductory perspective.
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INTRODUCTION

Oxidative stress plays an important role in homeostasis and disease in most tissues. Reactive species
are continuously generated as byproducts of normal cellular metabolism. Antioxidant mechanisms,
acting via specific scavenger reactions and detoxification pathways, revert its accumulation and avoid
oxidative stress-related damage (Reis et al., 2021). Curiously, for some processes, the existence of a
transitory oxidative stress is a biological necessity. However, when oxidative stress remains because
of an imbalance between the production and scavenging of reactive species, it results in an array of
physiopathologic changes, consequence of a spiral of new sources of free radicals and oxidative
species and increased damage (Reis et al., 2021).

In the literature, the term reactive oxygen species (ROS) is often used to encompass all
reactive species, regardless of the specific chemical species. Other authors differentiate reactive
nitric species (RNS) when referring to nitric oxide and nitrogen dioxide free radicals,
peroxynitrite, and nitrite/nitrate (Sies et al., 2017). ROS are mainly produced by
mitochondria, the foundational organelle for energy generation in cells, intervening in many
of the cell signaling cascades (McBride et al., 2006; Quirós et al., 2016; Zheng et al., 2020). The
most important oxygen free radicals include hydrogen peroxide (H2O2), hydroxyl radical (-OH),
superoxide anion radical (·O2 −) and nitric oxide (NO). However, other oxygen-derived free
radicals have relevant roles in cell metabolism, such as the peroxyl radical cation and other
hydroperoxides (Dröge, 2002).

Oxidative stress is being increasingly recognized by its dual role, no longer the cause and root of all
evil. ROS generation is not only essential as part of the immune cells’ response against pathogens but
may act to signal and modulate cell responses, essential for life. Oxidation–reduction (redox)
homeostasis is ubiquitous to living cells, tissues, organs, systems. Oxidative eustress or physiological
oxidative stress is positive and a fundamental signal and control mechanism (Sies et al., 2017); low
concentrations of ROS and RNS allow reversible oxidative/nitrosative modifications of redox-
sensitive residues in regulatory proteins; these modifications may translate into a loss or gain of
function or a change of function (Dröge, 2002; Moldogazieva et al., 2018). Oxidative distress is
associated with high burden, supraphysiological oxidative challenge and has deleterious
consequences, leading to oxidative damage of biomolecules and disruption of the redox
signaling pathways (Sies, 2019).
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The skeletal system shares with the cardiovascular, muscular,
and connective tissues its embryonic mesodermal origin; thus it is
possible these tissues share some regulatory pathways. NO has an
essential function in cardiovascular function. The nitric oxide
synthase (NOS) in the endothelial cells regulates vascular smooth
muscle relaxation through nitric oxide synthesis, mediates
angiogenesis, and controls muscle cell proliferation; diffused
NO inhibits platelet aggregation and thrombogenesis (Farah
et al., 2018). In blood vessels, NO is released in response to
stimuli such as shear stress. It has been hypothesized that the
signaling pathways leading to anti-atherogenic or pro-
atherogenic vascular wall reactions are ROS/RNS dependent
and depend on the flow patterns (Hsieh et al., 2014); the
endothelial cells are sensitive to fluid shear and several
processes, including vascular tone and remodeling,
angiogenesis and vascular morphogenesis are modeled by
these forces and the resulting cell response (Roux et al., 2020).

Bone is highly dynamic, its form and cellular activity continuously
tailored by load and strain, responsive to external and internal stimuli.
Environment, cell-to-cell, and cell-matrix interactions regulate
osteogenesis, bone repair, and remodeling, a process coupling
bone resorption and formation. Bone homeostasis is strongly
intertwined with intracellular reactive species production, namely
reactive oxygen species (ROS) and reactive nitric species (RNS).

This paper intends to condense the current knowledge on the
role of the redox balance in physiological and pathological
conditions in bone, as well in the presence of orthopedic
implants, and establishing connections to bone
mechanobiology, still largely unexplored in this aspect. It is
aimed at those that, like the authors, come from a clinical or
mechanical and biomedical engineering background.

OXIDATIVE STRESS IN BONE
HOMEOSTASIS

Mature bone contains three key cell populations: osteoblasts,
osteocytes and osteoclasts. While osteoblasts differentiate from

mesenchymal stem cells, and may differentiate into osteocytes,
osteoclasts arise from the same lineage as macrophages and
monocytes. The bone remodeling process depends on the
coordinate action of the different cell populations; osteoblastic
bone formation activity must be balanced by osteoclastic
resorptive action (Figure 1). Osteoblasts and osteocytes
express membrane-bond RANKL (receptor activator of nuclear
factor NF-κB ligand) and this regulatory molecule interacts with a
receptor - RANK (receptor activator of nuclear factor-κB) -,
expressed on the surface of osteoclast precursors. RANK
activation by RANKL is essential for fusion of the osteoclast
precursor cells and osteoclast formation (da Costa Reis &
Oliveira, 2020; Nakashima et al., 2011). Osteoblasts also
secrete osteoprotegerin (OPG), an inhibitor of
osteoclastogenesis. The Wnt/β-Catenin pathway is
fundamental for bone-mass homeostasis; osteocytes are key to
the canonical Wnt signaling pathway regulation, for they produce
Wnt ligands, are targeted by these and secrete molecules that
modulate Wnt actions (Al-Bari & Al Mamun, 2020).

NO and prostaglandin E2 (PG E2) are released by osteoblastic
lineage cells under cyclic mechanical load; strain applied through
the substrate and through fluid flow stimulated the release of
nitric oxide (Mullender et al., 2004; Frias et al., 2010; Yavropoulou
and Yovos, 2016). Nitric oxide and PG E2 are essential for
balanced bone remodeling since both are related to RANKL
expression (Huang et al., 2017; I; ntemann et al., 2020). PG2
induces RANKL expression in osteoblasts, in an autocrine and
paracrine manner via activation of the EP4 receptor, and exerts
regulatory action on angiogenesis and vascular permeability,
thus, modulating bone metabolism (Intemann et al., 2020).

Superoxide synthesis by the osteoclasts’ NADPH oxidases
(Nox) is also necessary to allow bone resorption in
physiological bone remodeling processes (Darden et al., 1996).
There are three identified Nox isoforms involved in osteoclast
differentiation and function, Nox1, Nox2, and Nox4. Nox
isoforms expression is controlled by several mechanisms such
as the transcription factor nuclear factor-erythroid 2-related
factor (Nrf2), key to antioxidant cellular responses, and

FIGURE 1 | Bone remodeling processes rely on the balance between anabolic and catabolic cell activity to maintain a healthy bone structure, adapted to loading
demands.
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regulator of bone homeostasis (Sun et al., 2015; Wegner and
Haudenschild, 2020). Nuclear respiratory factor 1 (Nrf1) is also a
transcription factor, of the same family, and known to regulate
the antioxidant response elements-driven target genes (Xing
et al., 2007). Both have been linked to the expression and
activity of Osterix and RUNX, both associated with osteoblast
differentiation and bone metabolism regulation (Xing et al., 2007;
Sun et al., 2015).

While ROS generation in inflammatory processes arises
mainly from the mitochondria, fine-tuned ROS generation,
both in physiologic and pathologic conditions, is originated
mainly by members of the Nox family; these differ in cellular
location, activation mode and type of ROS they produce; Nox1/2
produce •O2ˉ and Nox4 produces H2O2, contributing to
modulate the formation, activity, and survival of osteoblasts
and osteoclasts (Figure 2).

Osteocyte differentiation has been associated with increased
Nrf2 activity, that responding to raised ROS levels, drives the
transcription of osteocyte-specific genes. This is likely caused by
increased mitochondrial numbers associated to glucose
deprivation. Nutrient deprivation likely results from the
osteoblast entrapment in the mineralized bone matrix,
triggering the osteoblast-osteocyte transition (Sánchez-de-
Diego et al., 2021). Thus, cell fate (osteocytogenesis or
apoptosis) is again finely tuned by the cell redox state.

NO is essential to control and balance periodontal stem cell
differentiation, promoting osteogenic differentiation rather than
adipogenic (Yang et al., 2018), and has anabolic effects in bone,
promoting osteoblast differentiation and glucose metabolism.
NO production depends on arginine synthesis via the enzyme
argininosuccinate lyase and its production is negatively

modulated by control mechanisms such as nitric oxide
synthase binding by caveolin-1 (Jin et al., 2021). NO release
may be triggered by RANKL; since inhibition of RANKL-induced
NO increases osteoclastogenesis and bone resorption,
osteoclastogenesis in response to RANKL is probably
diminished by NO production (Huang et al., 2017) (Figure 3).

The transcription factor activator protein 1 (AP-1) is
implicated in differentiation mechanisms and cell activity
regulation (Garces de Los Fayos Alonso et al., 2018; Bejjani
et al., 2019). It is formed by c-Fos and c-Jun proteins and its
activity is redox-regulated (Abate et al., 1990). Intermediate levels
of ROS activate the AP-1 transcription factor and the NF-κB
signaling pathway, while low levels of ROS stimulate Nrf2. NF-κB
activation triggers osteoclastogenesis and increased levels of
inflammatory cytokines (Le Rossignol et al., 2018; Lepetsos
et al., 2019). NO may also suppress the DNA-binding activity
of AP-1 through S-glutathionylation; NO modifies the two
cysteine residues contained in the DNA binding module of
c-Jun (Klatt et al., 1999; Lepetsos et al., 2019), supporting NO
anabolic effects on bone mass. High AP-1 is, thus, one of the
transcription factors intervening in osteoclastogenesis and in the
regulation of osteoclast activity (Wagner, 2010; Pang et al., 2019).
c-Jun and AP-1 are also involved in osteogenic differentiation of
mesenchymal stem cells, namely through increased RUNX2
expression (Fu et al., 2019). Under or over-expression of Fra-
2, a Fos-related protein of the AP-1 family, results in structural
and functional bone anomalies. Fra-2 promotes osteoblast
differentiation, collagen, and osteocalcin production,
apparently in detriment of adipocyte formation, without
affecting osteoclastogenesis (Bozec et al., 2010). Recent studies
suggest reduced ROS production inhibits osteoclast

FIGURE 2 | Main cellular populations in bone, role and NADPH oxidases isoforms expressed, paramount for ROS-mediated differentiation, activity and fate of
osteoblasts and osteoclasts. Under mechanical loading, Nox2 is activated in osteocytes, producing ROS and leading to ROS-mediated decrease in sclerostin and
activation of theWnt/β-catenin pathway. Bone marrowmacrophages express Nox2. During RANKL-induced osteoclast differentiation, Nox2 is suppressed and Nox4 is
upregulated by RANKL. Overexpression of Nox4 increases adipogenesis and not osteogenesis. Osteogenic differentiation involves parathormone (PTH) and Wnt
signalling pathways. Nox1 and Nox2 are inducible and thought to have a role in osteoblast proliferation and differentiation. Osteoprotegerin expression is induced by
physiological mechanical stimulation and inhibits osteoclasteogenesis. Nox4 synthetizes H2O2 and drives cell differentiation. Insert: bone cell regulation and
mechanotransduction involves several ROS-sensitive pathways.
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differentiation and bone resorption (Ohyama et al., 2018), via a
decrease in mitogen-activated protein kinases (MAPKs)
extracellular signal-regulated Erk and the activation of c-Jun
N-terminal kinases (Erk). The elevation of intracellular ROS
levels leads to the activation of MAPKs, such as p38, Erk, and
JNK, by oxidative modifications of MAPK signaling proteins and
through inactivation of the MAPK phosphatases (MKPs). The
latter inactivate MAPKs by dephosphorylation. MKPs may be
inactivated by oxidation of cystein residues in the enzyme
catabolic site. However, MKPs induction or inactivation by
ROS is likely dependent on ROS levels. ROS may
simultaneously activate MAPKs and induce MPK expression
(Son et al., 2013).

H2O2 promotes osteoclast formation and osteoblast apoptosis,
inhibiting osteoblast proliferation, while •O2ˉ increases with
osteoclastic resorption activity, prompted by parathormone
and interleukine 1 (Garrett et al., 1990; Lean et al., 2005; Dai
et al., 2017).

Oxidative stress impairment of osteoblast differentiation and
osteogenic capacity has been associated with bone loss in aging. In
the aging mice, the expression of Forkhead box O (FoxO) target
genes increases, while the expression of Wnt target genes
decreases, due to interference with the Wnt/β-Catenin
pathway (Almeida et al., 2007). The FoxO transcription factors
regulate the expression of genes coding for proteins with
antioxidant activity. FoxO activity may be regulated by
posttranslational modifications, protein-protein interactions,
and also by mechanisms regulating FoxO gene transcription
and mRNA stability. FoxO transcription factors are subject to
redox regulation through phosphorylation (through MAPKs
activity) and acetylation and ubiquitination of the lysine
residues in FoxO proteins (Klotz et al., 2015). β-catenin is
required for FoxO transcription, and this binding is stimulated
by ROS, thus decreasing β-catenin availability, to the detriment of
the Wnt/β-catenin signaling pathway. In aging mice, NAD+ is
decreased. NAD + -dependent Sirtuin1 deacetylates FoxOs and

β-catenin, increasing Wnt pathway expression in osteoblast
progenitors (Kim and Park., 2021). ROS interference in
osteoblastogenesis and osteoclastogenesis is also present in
pathological conditions such as osteoporosis and arthritis
(Agidigbi and Kim, 2019; Wang Y. N. et al., 2021).

The different bone cell types communicate through Cx43 gap
junction channels and hemichannels; the Cx43 gap junction
channels are central to mechanotransduction and bone
remodeling. Under oxidative stress or diminished antioxidative
defense conditions, such as osteoporosis due to aging, estrogen
deficiency or glucocorticoid treatment, Cx43 expression is
decreased. The opening of Cx43 hemichannels has a protective
role against osteocyte cell damage by ROS (Hua et al., 2021) and
protects the trabecular bone against catabolic effects associated
with estrogen deficiency (Ma et al., 2019).

BONE DEVELOPMENT AND HEALING: THE
ROLE OF OXIDATIVE STRESS

There is evidence that redox states within the embryo shape gene
expression patterns through redox-sensitive transcription factors
(Figure 4), as has been theorized; changes in redox state may also
contribute to spatial differences in cell activity, contributing to
cell differentiation, and intimately related to the production of
necessary energy for survival and growth (Harvey et al., 2002).
Life emerged and evolved in an environment with varying levels
of oxygen, often hypoxic, and redox/hypoxia seems to be an
ancient and well-conserved regulatory pathway, fundamental for
development and regeneration (Loenarz et al., 2011; Coffman and
Su, 2019). Mammalian embryos develop in a hypoxic
environment; hypoxia inducible factor (HIF) has several
isoforms from which HIF1 is the most relevant in the context
of skeletal tissues. HIF consists of two subunits, one unstable
(HIF-α), and one stable (HIF-β); it is a transcription factor
intervening in the cell response to hypoxia. Oxygen

FIGURE 3 | ROS synthesis and regulation of osteogenic and osteoclastic cells. Physiological levels of NO inhibit RANK/RANKL-mediated osteoclastogenesis.
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concentrations regulate the level and activity of HIF-α through
hydroxylation of prolyl residues, by members of the prolyl
hydroxylase domain (PHD) family and asparaginyl
hydroxylase (FIH) (Kaelin and Ratcliffe, 2008). Under normal
oxygen conditions, the hydroxylation of HIF-α decreases its
transcriptional activity. Under hypoxia, the hydroxylation of
HIF-α is inhibited, since it needs oxygen and iron. HIF-α
becomes abundant in the cytoplasm, translocates to the
nucleus, and dimerizes with HIF-β subunit. The dimer then
binds to hypoxia-response elements (HREs), promoting the
expression of target genes that modulate cell response to
hypoxia (Coffman and Su, 2019). The formation of
vertebrates’ endochondral bone is initiated by the formation of
avascular mesenchymal condensations, followed by
chondrogenesis, a process in which HIF-1α is required for
chondrocyte differentiation, survival, and proliferation
(Cordeiro and Tanaka, 2020). HIF has been linked to
upregulation of angiogenesis and secretion of extracellular
matrix proteins, including collagen type II (Wan et al., 2010;
Bentovim et al., 2012). Interestingly, HIF-1α is activated by NO
under normoxic conditions (Wan et al., 2010).

Mesenchymal stem cell proliferation and osteogenic
differentiation also depend on other transcriptional factors
such as Runx2, Osterix, and FoxO, as previously discussed.
The above-mentioned transcriptional factors, all directly or
indirectly regulated by oxygen and redox environment, do not
operate in tightly separated pathways, contributing to the
redundancy and multi-point pathway control of cell fate and
stress response.

Gene expression is also directly controlled by oxygen levels
since histone demethylases are oxygen-dependent, in an

oxygen-mediated mechanism that seems to precede the HIF
pathway (Coffman and Su, 2019).

Adequate nutrient and oxygen support is, therefore,
fundamental for cell fate determination, as it is widely
recognized in clinical practice. Preserving vascularization and
blood supply to fracture sites is a priority during the surgical
approach and osteosynthesis. The mechanical stability of the
fracture site is determinant for the healing mode. In stabilized,
non-complicated fractures, mesenchymal stem cells differentiate
directly into osteoblasts, and fracture healing ensues by
intramembranous ossification while if the fracture is unstable,
the bone heals through endochondral ossification (Miclau et al.,
2017). In most clinical situations, both ossification modes occur.
After a bone fracture, there is always some degree of disruption of
the blood supply, leading to local lower oxygen levels. This
hypoxic local environment is a powerful trigger for
neovascularization through the HIF-1 pathway and the
expression of vascular endothelial growth factor (VEGF) (Shen
et al., 2009). Hypoxia also induces bone morphogenetic protein 2
(BMP2) expression by mesenchymal stem cells through a
pathway independent from HIF-1; BMP2 is a powerful
inductor of osteo and chondrogenesis, and its induction
happens through a redox-sensitive mechanism; if hypoxia is
prevented, BMP2 secretion is inhibited and healing is
impaired, as happens in fracture non-union (Muinos-López
et al., 2016). BMP2 secretion and HIF1 activation seem to
overlap. The hypoxia, although necessary, should be transient;
normoxia conditions are necessary for collagen cross-linking and
stabilization of the basement membrane of the new vascular
network that will ensure adequate perfusion of the site
(Miclau et al., 2017). NO has a recognized role in fracture

FIGURE 4 | Redox state and strain levels; persistent sub or supraphysiological mechanical stimulation leads to increased ROS levels and deregulation of the bone
remodeling and formation processes.
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healing; NO mediates vasodilation, essential for increased blood
flow to the fracture site but also for the vascular response, bone
formation, and resorption during the remodelling phase (Ding
et al., 2018).

OXIDATIVE STRESS MECHANISMS IN
DISEASE: HOW IS BONE AFFECTED

ROS are increased in inflammatory conditions and in a number
of non-inflammatory systemic diseases that impact bone
metabolism. However, ROS-sensitive mechanisms are also
essential for normal fracture healing. Research has been
focused on the effects of the superoxide anion and hydrogen
peroxide on bone cell function and bone remodeling (Wauquier
et al., 2009), but other ROS, as well as the antioxidant systems, are
also relevant in disease processes.

Fracture non-union is a frequent, painful, complication of
bone fractures, deleterious to patient wellbeing. The work
developed by Muinos-López et al. (Muinos-López et al., 2016)
suggests that although hypoxia is fundamental for initiation of the
fracture healing process, factors scavenging ROS are critical for in
early phases and mesenchymal stem cells redox state is
determinant. Decreased BMP-2a impairs MSC differentiation
and delays cartilage mineralization while elevated
metalloproteinases contribute to BMP degradation, as reviewed
by Ding et al. (Ding et al., 2018). When considering ROS,
although the beneficial role of NO is recognized, it is also
known that NO levels are increased in hypertrophic non-
union calluses, suggesting NO is part of the molecular
pathogenesis of nonunion, a hypothesis also supported by the
altered levels of the amino acids associated with NO metabolism
in atrophic non-union calluses, with arginine availability
seemingly a limiting factor (Wijnands et al., 2012). NOS-
knockout mice show impaired fracture healing, through
deregulation of arginine-NO metabolism, paired with
increased neutrophil influx to the fracture site; this study
focused on the activity of NOS2 and NOS3, not of NOS1, the
most relevant for the latter remodeling phase (Meesters et al.,
2016).

Osteoarthritis (OA) is the most common joint disorder and
affects both articular cartilage and subchondral bone. Its etiology
is multifactorial but includes ROS overproduction, associated
with Nox4 (Drevet et al., 2018), affection intracellular signaling,
impairs chondrocyte and matrix metabolism, contributes to
inflammation and subchondral bone lesions. The mechanisms
by which ROS are involved in the pathogenesis of the articular
cartilage lesions are better characterized than those concerning
the subchondral bone. In OA, a central role is played by the NF-
κB transcription factors family. The NF-κB dimers, when able to
translocate from the cytoplasm into the nucleus, regulate the
expression of proinflammatory cytokines, immunomodulatory
proteins, and molecules vital for cell adhesion and proliferation.
NF-κB is redox-sensitive and its activity may be increased or
inhibited by ROS, following oxidation or S-glutathionylation of
redox-sensitive cysteine residues, depending on the level of
ROS, the types of stimuli, and the cell type (Lepetsos et al.,

2019). NF-κB may also regulate Nrf2 transcription and activity,
affecting the redox balance (Choi et al., 2019; Lepetsos et al.,
2019). Chondrocytes treated with advanced oxidation protein
products increase the expression of interleukin (IL)-1β and tumor
necrosis factor (TNF)-α, known to prompt articular degenerative
changes; this happens via the Nox4-dependent and p38-MAPK
mediated pathway (Liao et al., 2020). Mechanical stress has been
associated with the development of OA, via activation of
interleukin-1β, tumour necrosis factor-α, nuclear factor kappa-
B, Wnt, transforming growth factor-β, microRNAs pathways,
and the oxidative stress pathway. Involved receptors include
integrin, ion channel receptors, hydrogen peroxide-inducible
clone-5, Gremlin-1, and transient receptor potential channel 4
(Fang et al., 2021).

Rheumatoid arthritis (RA) is a chronic systemic autoimmune
disease, arising from the synovia; it may course with synovial
hyperplasia, cartilage damage, bone erosion, and systemic
repercussions. The subchondral bone may become eroded as a
result of increased numbers of osteoclasts and decreased
osteoblasts (Guo et al., 2018). RA is associated with high levels
of ROS and local bone loss as a consequence of inflammation.
Redox-sensitive transcription factors, including NF-κB, AP-1,
and Nrf2, are involved in the pathogenesis of RA (Le
Rossignol et al., 2018). NOX4 is the only NOX isoform found
in human chondrocytes and it may be central in cartilage
degradation and development of osteoarthritis (Agidigbi and
Kim, 2019).

Osteoporosis, another multifactorial progressive disorder, is
not inflammatory in nature, as opposed to OA and RA. However,
there is increasing evidence that redox imbalance is implicated. In
patients with post-menopausal osteoporosis, plasma total
oxidative status and oxidative stress index were significantly
higher than in healthy controls, and total antioxidant status
was lower (Altindag et al., 2008). NOX4 is involved in bone
loss and represents a potential therapeutic target for the treatment
of osteoporosis. Inhibition of Nox4 activity attenuates
osteoclastogenesis, which is accompanied by impaired
activation of RANKL-induced NFAT-1 (nuclear factor of
activated T cells 1) and c-Jun (Schröder, 2015). NFATc1
signaling could be the key downstream event in RANKL-
mediated ROS signaling (Agidigbi and Kim, 2019). Age-related
osteoporosis is also related to a deficit in osteoblasts, which
decline in numbers with aging. In aged mice, decreased levels
of NAD+ were described, associated with increased acetylation of
the FoxO1/β-catenin pathway and markers of cell senescence.
Reduction of NAD + levels in osteoprogenitor cultures from
young mice inhibited osteoblastogenesis in a FoxO-dependent
manner (Kim et al., 2021).

Diabetes mellitus (DM) is an important cause of impaired
bone healing and delayed fracture healing; recent studies suggest
high glucose concentrations are deleterious for osteoclastogenesis
and osteoclast function (Hu et al., 2019). High glucose levels also
suppress osteogenic differentiation in vitro by promoting the
production of ROS and downregulating the anti-oxidative
defense enzyme superoxide dismutase; these effects are
reversed by the use of antioxidants (Dong et al., 2017). Low
bone mineral density has been reported associated with DM (Adil
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et al., 2015) and differences may be more marked in post-
menopausal women with DM (Halper-Stromberg et al., 2020).
These anomalies have been associated with increased ROS by
altered energy metabolic pathways (Bacevic et al., 2017; Dong
et al., 2017; Korac et al., 2021).

The skeleton is affected by primary and secondary neoplasia.
As in healthy tissue, ROS are important determinants of cancer
biology and behavior. Cancer cells produce ROS and these may
act promoting cell survival and proliferation or cell death. In
osteosarcoma, the knockdown of NOX2 significantly suppressed
ROS generation, inducing apoptosis as a result (Kitamoto et al.,
2018). Nrf2 is related to a poor prognosis in osteosarcoma (Park
et al., 2012); Nrf2 heightened activity protects cells against
apoptosis, even following DNA damage which is not
adequately corrected; tumorigenesis may also occur due to
metabolic changes initiated by Nrf2 activation or by signaling
changes that are Nrf2-dependent (Gunne et al., 2020). Nfr2
promotes cancer development after it is established, a change
to its protective role in the physiological status. Nfr2 also
modulates the immune response; immune suppression in
cancer depends mainly on regulatory T (Treg) cells and
myeloid-derived suppressor cells (MDSCs) (He et al., 2020).
The inhibition of the cytoprotective, antioxidant Nfcr2
pathways has been shown to be a highly promising
therapeutic solution for numerous tumors, including
osteosarcoma (Lu et al., 2018; Panieri and Saso, 2019;
Telkoparan-Akillilar et al., 2021). Solute carrier 25 family
member 10 (SLC25A10), or dicarboxylate carrier, also is
important for redox homeostasis. SLC25A10 levels are elevated
in human osteosarcoma tissues, compared with normal bone
tissues; higher SLC25A10 levels have also been positively
correlated with metastization (Wang et al., 2020).

OXIDATIVE STRESS AND BONE
MECHANOBIOLOGY

Adequate mechanical stimulation is of paramount importance for
bone homeostasis, remodeling, and formation. As postulated by
Wolff’s law, bone adapts to functional loads conditions, in such a
way that its mass and architecture are optimal; the magnitude and
distribution of resulting strains are decisive (Rubin and Lanyon,
1984). Bone adaptation occurs to maintain the local strain;
increased bone strain from physical activity may induce bone
gain, if within the elastic deformation interval, while decreased
bone strain results in bone loss (Sugiyama et al., 2016). However,
mechanical loading influences more than bone mass and
microarchitecture, since loading also increases bone material
strength in post-menopausal healthy women; the effects of the
daily one-leg jump, in increasing number for 3 months, was
present on the loaded tibial bone when compared to
contralateral control tibia (Sundh et al., 2018).

Supraphysiological mechanical forces induce inflammation
through activation of the NF-κB cascade, known to be redox-
sensitive (Chatterjee and Fisher, 2014). Excessive mechanical
loading induces an increase in ROS, activating NF-κB and
cartilage degeneration (Chang et al., 2019), further supporting

the existence of a ROS-mediated mechanism in damage
associated with mechanical stress. Lack of sufficient
mechanical stimuli induces altered mitochondrial function.
Microgravity conditions inhibit the proliferation of
mesenchymal stem cells and osteogenic differentiation through
downregulation of a multitude of genes, including Runx2 and
BMP2 (Li et al., 2019). Microgravity deeply affects osteoblast
mitochondrial energy potential, inducing an oxidative stress
response, with decreased oxidized glutathione and antioxidant
enzymes (Michaletti et al., 2017); similar interference with the
glycolysis pathways, resulting in downregulation of osteocytic
genes, was described in osteocytic cell lines under microgravity
conditions (Uda et al., 2021). Mechanical unloading increased
both intracellular ROS production and the Sod1 expression in
bone tissue including bone marrow cells in mice (Morikawa et al.,
2013).

However, again ROS effects are dual. Both NO and PG E2 are
required in mechanically induced bone formation (Chow et al.,
1998; Watanuki et al., 2002) (Figure 4). The nitric oxide synthase
has several isoforms: an endothelial isoform (eNOS), extensively
expressed in bone on a constitutive basis, and an inducible
isoform (iNOS), only expressed in response to inflammatory
stimuli and a neuronal NOS (nNOS). The eNOS isoform plays
a key role in regulating osteoblast activity and bone formation
also mediating bone mechanical stimulation (van’t Hof and
Ralston, 2001; Schröder, 2015). Osteocytes express NO
transporters and a few minutes after a mechanical stimulus,
release NO which suppresses bone resorption (Chambers
et al., 1999). Increased ROS levels and osteogenic gene
expression in MC3T3-E1 osteoblasts, through MAPK
activation mediated by ROS, were described after stimulation
by low-intensity pulsed ultrasounds; inhibition of ROS attenuated
osteogenic gene expression, including Runx2, osteocalcin, and
osteopontin (Kaur et al., 2017). It is also recognized that
osteocytes transduce mechanical load signals to activate Nox2,
producing ROS signals; this response is accompanied by a rapid
ROS-mediated decrease in sclerostin levels by lysosomes,
allowing activation of the Wnt/β-catenin signaling pathway,
and bone formation (Schröder, 2015; Gould et al., 2021).
However, in endothelial cells, oxidative stress due to
unregulated Nox activity leads to altered eNOS function,
shifting from NO production to O2

−, further inducing
oxidative stress and increasing ROS levels, with subsequent
endothelial disfunction (Meza et al., 2019). It is possible that a
similar process occurs in bone.

The peroxisome proliferator-activated receptor-gamma,
coactivator 1 alpha (PGC-1α) is an important regulator of
mitochondrial biogenesis, and it regulates ROS metabolism by
preventing oxidative stress. In skeletal muscle, its role in
mitochondrial homeostasis during differentiation has been
recognized. Downregulation of PGC-1α caused impairment of
antioxidants expression, accompanied by a significant burst in
ROS and oxidative damage to proteins. Mitochondrial mass and
function decreased while mitophagy augmented through the
ROS/FOXO1 pathway (Baldelli et al., 2014). The PGC-1α
anabolic role in bone has been highlighted by a number of
in vitro and in vivo studies, as recently reviewed by Buccoliero
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et al., (Buccoliero et al., 2021). Sirtuin 3, a mitochondrial (NAD)-
dependent deacetylase, is a key regulator of osteoblastic
differentiation through regulation of mitochondrial function;
its absence reduces the expression of superoxide dismutase 2
(Sod2), a mitochondrial molecule with antioxidant activity that
permutes superoxide into the less reactive hydrogen peroxide.
PGC-1α stimulates Sirtuin 3 activity on osteogenic differentiation
(Buccoliero et al., 2021). How different biophysical stimuli may
affect mitochondrial metabolism bone was recently reviewed by
(Wang F.-S. et al., 2021). In rat skeletal muscle tissue, the
expression of PGC-1α and HIF-1α were differently affected by
the training regimen (continuous, moderate exercise vs high-
intensity interval) (Ahmadi et al., 2021). However, regarding
bone, there is still limited information on how different
loading regimens affect these pathways.

OXIDATIVE STRESS AND ORTHOPEDIC
IMPLANTS

Inflammation and hypoxia are leading conditions that drive
oxidative stress (Mittal et al., 2014). Neutrophils, eosinophils,
and monocytes/macrophages are able to produce large amounts
of ROS such as superoxide and hydrogen peroxide as part of the
response to a perceived pathogen invasion or mechanical trauma;
the release of ROS may be further stimulated by inflammatory
mediators (Hameister et al., 2020).

Following trauma, bone healing is initiated with hematoma
formation and acute inflammatory response. Disruption of the
vascular and bone structures triggers the release of cytokines,
leading to inflammatory cell recruitment, especially neutrophils
and macrophages (Bahney et al., 2019). Macrophage
differentiation and function are strongly influenced by ROS
(Zhang et al., 2013). Interestingly, macrophages present
different gene expression patterns and cytokine secretion
profiles, depending on whether they were induced in
pathological conditions or RANKL-induced M1 macrophages.
These were found in vivo close to iNOS + cells (inducible nitric
oxide synthase-positive cells), peaking on day 7 during bone
healing, suggesting they are NO-dependent, involved in bone
formation. M1 macrophages’ activity is both influenced and
influences the microenvironment (Huang et al., 2017).

Surgical trauma is, thus, a cause of oxidative stress, with its
magnitude influenced by pathology and comorbidities
(Rosenfeldt et al., 2013; Karachalios et al., 2021). Prior to
implantation, patients with orthopedic disease often suffer
from conditions that contribute to oxidative stress, affect the
local microenvironment, and may condition surgical success and
implant performance (Mouthuy et al., 2016). The implant itself
may drive further oxidative stress, as well as suffer degradation in
consequence (Mouthuy et al., 2016; Borys et al., 2018; Eliaz,
2019). Implant wear products are a known cause for
inflammation and ROS generation; ROS are generated by local
macrophages, through the NOX signaling pathway, also affecting
the NF-κB activation (Chen et al., 2015). Although ROS originate
from acute and chronic inflammation, they may further arise
from the metal surfaces of implants by reduction reactions,

subsequently affecting neighboring cells. In turn, the lower pH
associated with inflammation is a contributor to corrosion
phenomena; the resulting increase in released particles will
perpetuate inflammation, further implant structural damage,
and eventually promote systemic effects (Eliaz, 2019;
Hameister et al., 2020). Ferroptosis is a form of controlled cell
death that occurs in the presence of iron overload and leads to the
formation of lipid ROS (Sharma and Flora, 2021), and its
association with peri-implant inflammation and cell death has
been suggested (Liu et al., 2020). Likewise, increased local ROS
levels, inflammation and metallosis have been associated with
titanium alloy implants and tribocorrosion phenomena (Borys
et al., 2019; Eliaz, 2019).

The performance of implants is also greatly influenced by
protein adsorption to the implant surface, with an effect on its
stability, metal ion release, and cell adhesion; the redox balance
influences protein-metal interactions; recent studies show
H2O2 impedes the formation of dense protein domains on
Ti6Al4V surface, increasing protein adsorption, surface
potential and total roughness in Ti6Al4V implant surface
(Rahimi et al., 2021).

DISCUSSION

Oxidative stress has been one of the factors implicated in bone
disease, in the loss of biomaterials biocompatibility and function.
It is now clear that redox mechanisms are paramount for bone
physiology.

A better understanding of the host-implant interplay and the
role of reactive species and oxidative stress regarding the fate of
implanted biomaterials is necessary.

Comorbidities such as DM, OA, and RA may also contribute
to oxidative stress since in all these diseases, ROS are increased
and NF-κB is activated, leading to inflammation and imbalances
in the bone coupling processes. Excessive production of ROS in
these pathologies results from abnormal oxidative energy
metabolism in the mitochondria, the activity of enzymatic
complexes like the Nox, or both. Noxs, namely Nox4, are one
of the culprits (Wauquier et al., 2009; Korac et al., 2021). DM, OA,
and RA may be present prior to the surgical procedure,
influencing the local microenvironment and thus, the clinical
outcome (Hameister et al., 2020). The implant itself will behave
differently in the presence of the disease-induced
microenvironment changes, namely by increased metal ion
leaching (Arteaga et al., 2021). Hyperlipidemia, frequently
present in diabetic patients and in several other diseases, as
well as a primary condition, causes overproduction of ROS
in vitro, interfering with the Wnt/β-Catenin pathway and
causing osteoblast dysfunction; in vivo, poor bone formation
at the bone-implant interface was observed (Wang Y. N. et al.,
2021). Overproduction of ROS may also cause eNOS uncoupling,
and a shift from NO production to O2

−, contributing to oxidative
distress.

Strategies to curb the deleterious effects of the excess ROS may
include implant surface modification by coatings with
antioxidant properties or by nanotopographic-modulated

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org November 2021 | Volume 9 | Article 7459118

Reis and Ramos The Oxygen Reactive Species and the Bone

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


FoxO activation (Abuid et al., 2021; Huang et al., 2021; Shao et al.,
2021); protein adsorption to the implant surface, and subsequent
changes in the protein structure influence cell adhesion, metal
particles release and ultimately, implant stability (Rahimi et al.,
2021).

Biomaterials’ selection should considerer their contribution to
optimum redox state, as suggested by Sthijns et al. (Sthijns et al.,
2021), who evaluated different polymers for a pancreatic islet
encapsulation device; cell sensitivity to oxidative stress is variable
and essential for cell survival, proliferation, and function (Sthijns
et al., 2021), and contributes to avoid chronic inflammation and
peri-implantar fibrosis. As reviewed by Sthijns et al. (Sthijns et al.,
2018), in tissue engineering approaches, ensuring adequate
perfusion of the construct is paramount for cell survival and
to avoid increased ROS formation. Several strategies may be
pursued to achieve optimum delivery of oxygen while avoiding
its toxicity. Developing biomaterials that are able to modulate the
redox-balance systems such NADPH oxidase, the Nrf2 or the HIF
pathways, is a promising approach (Sthijns et al., 2018).

On the other hand, there is also an increased interest in how
the redox state may be used as a stimulus in the development of
active implants, tuning their response to the local
microenvironment. Redox-responsive biomaterials are being
studied for drug delivery, with promising results (Yang et al.,
2014; Cheewatanakornkool et al., 2018; Gong et al., 2018; Yu
et al., 2020). A bio-inspired approach to infection control through
active implant generation of ROS has been tested. In this case,
implants were responsive to local pH decreases (Song et al., 2020).

Promoting bone health should also encompass nutrition. The
most abundant dietary antioxidants are polyphenols and
anthocyanin, present in fruits, vegetables, cereals, dry legumes,
chocolate, tea, coffee, and wine. As reviewed by Domazetovic
et al. (Domazetovic et al., 2017), antioxidant intake promotes
bone health. In animals and selected groups of patients with
osteoporosis or inflammatory bone diseases, the use of
antioxidants was beneficial for the treatment and prevention
of bone loss (Domazetovic et al., 2017). Total dietary
antioxidant capacity has been described as inversely associated
with the risk of osteoporosis in postmenopausal women and
positively associated with bone mass in both pre- and
postmenopausal women (Kim and Park, 2021).
Eicosapentaenoic acid and docosahexaenoic acid omega-3 fatty
acids reduce superoxide production catalyzed by the NADPH
oxidase in neutrophils, and there is growing evidence of the
benefits of dietary supplementation in lowering the expression of
catabolic and inflammatory genes in osteoarthritis. Omega-3 fatty
acids reduce oxidative stress and apoptosis via the NF-κB and the
iNOS pathways. Dietary fatty acids may modulate osteogenic
differentiation in mesenchymal stem cells by up-regulation in
phosphorylation of protein kinase B (Akt) at the plasma
membrane (Wauquier et al., 2009; Abshirini et al., 2021).

Literature concerning the role of oxidative stress in
mechanotransduction and adaptive responses in endothelial
cells is more abundant and allows a better understanding of
both the mechanical forces involved and the cellular response
(Hsieh et al., 2014; Chatterjee, 2018; Roux et al., 2020; Psefteli
et al., 2021). Some studies in cartilage also contribute to the

characterization of mechanical loading and redox state alterations
(Coleman et al., 2017; Walsh et al., 2019), with evidence
supporting that inflammation induced by mechanical loading
is ROS-mediated (Kamalathevan et al., 2021).

There is, however, surprisingly limited knowledge on the
influence of the biomechanical environment in the bone and
bone-implant interface on the redox balance, with some of the
information available based on maxillofacial implantology
focusing on the effects of the implant itself. It is recognized
that ROS boost the inflammatory response and cause both
RANKL-induced osteoclastogenesis and osteoblast apoptosis,
leading to periprosthetic osteolysis aseptic loosening, the most
frequent cause of implant failure (Borys et al., 2018; Ozawa et al.,
2020; Galliera et al., 2021). Bone unloading such as observed in
disuse and microgravity conditions leads to decreased bone mass
and quality, through redox-mediated pathways. Implants,
especially metallic ones, have mismatched elastic modulus
when compared to the bone, leading to altered loading
patterns (stress shielding and stress concentration). Therefore,
it would be desirable to understand the contribution of such
altered strain levels to oxidative stress reported in numerous
studies.

A recent systematic review by Kohli et al. summarizes the
considerable overlap between the values of micromotion
associated with osseointegrated implants vs failed ones (mean
value of micromotion of 112 ± 176 μm for implants showing
osteointegration versus 349 ± 231 μm for non-integrated). Other
works correlate the implant stability with fibrous tissue formation
at the interface, associated with micromotion and lower implant
stability (Ramos et al., 2013). The need to consider the loading
conditions in detail, combined with the different localized bone-
implant geometry, as well as the fundamental mechanobiology
mechanisms was also highlighted (Kohli et al., 2021).

The ultimate strength of bone has been reported 25,000 μ, with
physiologic bone loading ranging from 200 to 2,500 µ. Peak
strains above 2,500 lead to increased bone mass. However,
repeatedly loading bone above 4,000 µ leads to accumulation
of damage. Repeated loading within the physiological bone
promotes adequate bone remodeling and bone mass
maintenance (Roberts et al., 2004; Ramos et al., 2015).

Mechanical unloading downregulates bone mass via
intracellular ROS generation (Morikawa et al., 2013). There is
evidence that appropriate mechanical stimulation improves
antioxidant functions in mesenchymal stem cells and improves
bone regeneration, while excessive stretch is deleterious for the
cellular antioxidant mechanism. The effect of cyclic stretch at
magnitudes of 2.5, 5, and 10% of human bone marrow-derived
mesenchymal stem cells was evaluated in terms of proliferation,
ROs, antioxidant enzymes expression, and osteogenesis.
Osteogenesis was increased by 5% stretch, intracellular ROS
decreased and the levels of SOD1 and SOD2 increased with
2,5 and 5% stretch; with the same levels of stretch, ROS
scavenging enzymes CAT and GPx1 were also increased. The
stretch-induced antioxidant effect was through activation of the
adenosine monophosphate-activated protein kinase-silent
information regulator type 1 signaling pathway, was more
pronounced with 5% stretch and null under 10% stretch
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(Chen et al., 2018). It would be useful to understand if PGC-1α is
involved in the increased SOD expression in response to different
strain levels in bone cells, as it happens in muscle.

Acknowledging the consequences of the disruption of the
loading patterns to bone health, and in face of what is already
known, the link between mechanical stimulation and local redox
state is apparent. However, although the cellular pathways
involving ROS signaling are more and more characterized, the
bond of the mechanical environment in relation to the redox state
is yet to be fully explored. Computational models may help
predict not only ROS production but also ROS scavenging and
the influence of inhibitors on ROS production (Gauthier et al.,
2013; Pereira et al., 2016). However, although this is a promising
approach and several of the existing models were later confirmed
experimentally, the incorporation of the modulation of multiple
signal-transduction cascades into a dynamic model is still lacking
(Pereira et al., 2016). An ideal model should be able to consider
spatial effects too, since ROS may originate in different parts of
the cell, in addition to predicting ROS damage and signal
modulation (Guimera et al., 2019). Haack et al. (Haack et al.,
2015) developed a stochastic computational model of canonical
WNT/β-catenin signaling, combining membrane-related and
intracellular processes, including lipid rafts/receptor dynamics
as well as Wnt and ROS dependent β-catenin activation, to
investigate its influence in the early phases of neural

differentiation (Haack et al., 2015). Signaling through this
same pathway increases bone mass by the renewal of stem cells,
stimulation of preosteoblast replication, osteoblastogenesis, and
inhibition of osteoblast and osteocyte apoptosis. So, along with the
application of the existing models to bone cells, further developing
models integrating mechanotransduction and redox state is a
much-needed, logical approach.

In what measure strain, stress, frequency of stimuli, and rest
periods are translated into redox state changes, intermediated
by the different reactive species, is a major challenge that may
be addressed through in-silico approaches, as well as
experimentally. However, as every unknown, it also carries
a promise of therapeutic applications through multimodal
approach, including optimal physical stimuli, adequate
antioxidant nutritional support, device selection and
modification to minimize oxidative distress and eventually,
drugs specifically targeting redox state and redox-sensitive
pathways.
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