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Abstract: Wildlife plays a major role in the maintenance and transmission of multihost pathogens.
Several Helicobacter spp. have been described to have zoonotic potential; thus, human, domestic and
wild animal interactions deserve more attention. In this study, the presence of the DNA of human
pathogenic gastric Helicobacter species was determined in gastric samples collected from wild rabbits
and wild quails during the national hunting campaigns in Portugal. Eleven out of the 12 wild rabbits
(91.7%) and all six wild quails tested (100%) were PCR positive for one or more gastric Helicobacter
species. In both animal species, H. felis, H. bizzozeronii and H. salomonis DNA were detected. In
addition to these non-Helicobacter pylori Helicobacter spp. (NHPH), H. pylori DNA was also identified
in gizzard samples of wild quails. These findings might indicate that wild rabbits and wild quails
may act as reservoirs and contribute to the H. pylori and NHPH environment dissemination, causing
both Public Health and One health concerns to arise.
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1. Introduction

Wildlife plays a major role in the maintenance and transmission of multihost pathogens
and the understanding of the role of host species in the epidemiological cycle is essential
to prevent diseases caused by zoonotic pathogens [1]. Although both wild and domestic
animal reservoirs can be considered important sources of emerging infectious diseases,
it is the human impact in the ecological systems that commands the level of risk at the
humans/animals interface upon zoonotic disease emergences episodes [2]. In addition, the
number of infectious diseases of zoonotic origin has been increasing, and approximately
72% are transmitted from wildlife [3,4].

Helicobacter species are Gram-negative, motile bacteria with a helical form that colo-
nize the gastrointestinal tract of humans and a wide range of animal species [5–8]. Gastric
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Helicobacter species have been studied over the years for their association with gastroin-
testinal diseases and zoonotic potential [9]. These bacteria have been widely described in
humans, dogs and cats [8,10,11].

Helicobacter pylori (H. pylori) is the most prevalent gastric pathogen in humans, infect-
ing over half the global population and causing gastritis, gastroduodenal ulcers, gastric ade-
nocarcinoma and mucosa associated lymphoid tissue (MALT) lymphoma [5,12,13]. Gastric
non-Helicobacter pylori Helicobacter species (NHPH) include a range of Helicobacter species
previously described as Helicobacter heilmannii type 1 (H. suis) and Helicobacter heilmannii
type 2 (H. felis, H. bizzozeronii, H. salomonis, H. heilmannii and H. ailurogastricus) [8,14].

In addition, gastric NHPH have been observed in 0.2–6% of human gastric biopsies
and have been associated with a range of gastric pathologies, especially MALT lymphoma,
as well as extra digestive diseases [8,15–17]. H. suis is the most common NHPH in hu-
mans suffering from gastric disorders, followed by H. salomonis, H. felis, H. heilmannii and
H. bizzozeronii [5,8,15]. Humans may acquire these infections through contact with animals
since most of NHPH are animal associated bacteria, but only some of them are recognized
as potentially zoonotic [9,11,18].

There are two reports of Helicobacter species in rabbits. In these studies, gastric NHPH
(H. felis and H. salomonis) DNA was detected in rabbit stomach samples [19,20]. Regarding
birds, enterohepatic but not gastric Helicobacter species are commonly detected and mainly
in intestinal or faecal samples [18,21–24].

Despite humans being considered the natural reservoir for H. pylori, this Helicobacter
species has been detected in other domestic and wild animals [8,11,20,24–27]. Nevertheless,
to the authors’ knowledge, there is a lack of studies regarding the presence of gastric
Helicobacter species in both wild rabbits and wild birds.

From an eco-epidemiological perspective, wild animals may have an important role
in the spread of several pathogens [28–31].

Hunting dogs and humans can become infected with game pathogens through direct
contact with fresh carcasses and the handling or consumption of raw or undercooked meat;
thus, as a result, game wardens, hunters, butchers and other wildlife professionals are at
high risk. Therefore, the aim of this study was to screen different regions of wild rabbit
stomachs (fundus and corpus) and wild quail gizzards for the presence of DNA from
H. pylori and zoonotically important NHPH, mainly associated with pigs, dogs and cats.

2. Materials and Methods
2.1. Animals and Samples Collection

Wild rabbits (Oryctolagus cuniculus) and wild quails (Coturnix coturnix), shot during
three national hunting campaigns held in the centre of Portugal (Coimbra district), were
subjected to convenience sampling. All the sampled animals were adults. Dissection of the
stomach was performed using disposable scalpels and disposable tweezers. Representative
gastric tissues from the fundus and corpus of wild rabbits and from the gizzard of wild
quails were collected using a sterile disposable Kruuse® (Langeskov, Denmark) Biopsy
punch 8 mm per sample, rendering cross-contamination between samples unlikely, and
then they were stored at −20 ◦C for further DNA extraction.

The animals were not slaughtered or euthanized in for this investigation and the
stomach specimens were obtained as sub-products of the usual meat inspection activity
that takes place throughout these campaigns. None of the acts were taken exclusively for
the purpose of research, and the researchers had no influence over the campaign’s planning
or meat inspection methods.

2.2. DNA Extraction and PCR Conditions and Sequencing

DNA was extracted from 8 mm of gastric frozen tissue samples, using the EXTRACTME®

DNA tissue Kit (BLIRT S.A., Gdansk, Poland) and according to instructions provided by
the supplier.
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All the samples were tested for the presence H. pylori, H. felis, H. salomonis, H. bizzozeronii,
H. heilmannii, H. suis and H. ailurogastricus DNA through conventional PCR analysis, ac-
cording to previously described protocols (Table 1).

Table 1. Primer sequences used for detection of H. pylori and NHPH and thermo cycling conditions.

Helicobacter
Species

Primer Sequence Target
Gene

Amplicon
Size

Thermal Cycle Conditions Helicobacter
Species Culture
Used as Positive

Control
Nr.

Cycles Temp. (C) Time

H. suis

BFHsuis_F1
AAA ACA

MAg gCg ATC
gCC CTg TA

ureA

150 bp 40
95
60
72

20 s
30 s
30 s

HS1

BFHsuis_R1
TTT CTT CgC
CAg gTT CAA

AgC g
ureA

H.
heilmannii

Hh-IceA-
FWQ

gTT TCC AAC
CAA AAg ACT

CA
iceA

135 bp 30
94
55
72

30 s
30 s
30 s

ASB1.4

Hh-IceA-RVQ
ATT gCC TAg
Agg TTg TgT

Tg
iceA

H. ailurogas-
tricus

Ha-LpsA-
FWQ

CTT gAg TAC
ggC gAT gTC

AAT
lpsA

136 bp 30
94
55
72

30 s
30 s
30 s

ASB7.1
Ha-LpsA-

RVQ
ggg gAA AAA
TgT gCT TgA

AgT
lpsA

H. salomonis

Hsal_FQ_PAR
CTC TTA TgA
gTT ggA CTT
ggT gCT CAC

CAA T
ureAB

91 bp 45 94
61
72

30 s
30 s

1 min
R1051

Hsal_RQ_PAR
TTT gCC ATC
TTT AAT TCC
AAT gTC ggC

ureAB

H. felis

BFHfel_F2
gCT ggT ggC

ATC gAT ACg
CAT

ureAB

154 bp 45
94
60
72

30 s
30 s

1 min
CS1

BFHfel_R2
TTT TTA gAT
TAg CgC gTC

Cgg gA
ureAB

H.
bizzozeronii

Hbizz_FQ_PAR
CCA ACA AAT
CCC CAC AgC
ATT TgC CAg

ureAB

91 bp 45 94
58
72

1 min
1 min
1 min

R1053

Hbizz_RQ_PAR
AgT CCC ATC

AgC Wgg WCC
TgT TCC CCC

AC
ureAB

H. pylori

BFHpyl_F1
AAA gAg CgT
ggT TTT CAT

ggC g
ureAB

217 bp 45
94
59
72

30 s
30 s

1 min
26695

BFHpyl_R1
ggg TTT TAC

CgC CAC CgA
ATT TAA

ureAB

Aliquots of each PCR product were electrophoresed on a 1.5% agarose gel stained
with Xpert Green Safe DNA gel stain (GRISP, Porto, Portugal) and examined under UV
light for the presence of specific fragments. The size of the DNA fragment was compared
to the standard molecular weight, the 100 bp DNA ladder (GRISP, Porto, Portugal) and
the molecular weight of the positive controls (Table 1). For the negative control, distilled
water was used. For the positive controls, DNA was extracted from pure cultures of each
Helicobacter species tested (Table 1).

To exclude false positive samples, the amplicons of each positive sample were se-
quenced. Bidirectional sequencing was carried out using the Sanger method at the Ge-
nomics core facility of the University of Porto’s Institute of Molecular Pathology and
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Immunology. MegaX Molecular Evolutionary Genetic Analysis version 10.1.8 was used
for sequence editing and multiple alignments. The sequences obtained were subject to the
basic local alignment search tool (BLAST) using the non-redundant nucleotide database
(http://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 7 December 2021).

3. Results and Discussion

A total of 30 gastric samples were evaluated: 24 were collected from 12 wild rabbits
and consisted of equal amounts of fundus and corpus mucosa, and six were collected from
six wild quails.

Eleven out of the 12 wild rabbits (91.7%) and the six (100%) wild quails were PCR
positive for one or more gastric Helicobacter species.

3.1. Wild Rabbits

Among the 11 PCR positive animals, the most prevalent Helicobacter was H. salomonis
(9/11), followed by H. bizzozeronii (5/11), and then H. felis (2/11) (Table 2).

Table 2. Number and percentage of positive PCR results for gastric Helicobacter species in wild rabbits.

Wild Rabbits (n = 12) Fundus
(n = 12)

Corpus
(n = 12)

H. salomonis 9 (75.0%) 8 (66.7%) 8 (66.7%)
H. bizzozeronii 5 (41.7%) 1 (8.3%) 5 (41.7%)

H. felis 2 (16.7%) 1 (8.3%) 1 (8.3%)

Concerning the wild rabbit specimens, and regardless of the stomach counterpart: four
animals were H. salomonis-positive, one was H. felis-positive, another was H. bizzozeroni-
positive, four were H. bizzozeronii plus H. salomonis-positive and one was H. felis plus
H. salomonis-positive (Table A1).

According to the gastric location, nine samples of each fundus and corpus location
were PCR positive for at least one Helicobacter species (Table 2).

The bidirectional sequencing and BLAST analysis of consensus sequences obtained
showed a homology of 97% to 100% with the respective species (Table A1).

Co-infections, i.e., the presence of more than one Helicobacter species, were detected
in 41.7% of wild rabbits; the most frequent bacterial association was H. salomonis plus
H. bizzozeronii (33.3%) and H. salomonis plus H. felis (8.3%). Regarding the Helicobacter
species identified, these results are in agreement with those previously described in pets,
as well as industrial and laboratory rabbits, which reported H. felis, H. salomonis and
H. bizzozeronii DNA in the gastric corpus [19,20], but are here reported for the first time in
free range wild rabbits.

3.2. Wild Quails

Of the six PCR positive animals, the most frequent species was H. salomonis (6/6),
followed by H. bizzozeronii (2/6), and then H. felis (1/6) and H. pylori (1/6) (Table 3).

Concerning the wild quails: three were H. salomonis-positive, one was H. salomonis
plus H. bizzozeronii-positive, one was H. salomonis plus H. pylori-positive and another was
H. salomonis plus H. felis plus H. bizzozeronii-positive (Table A1).

The bidirectional sequencing and BLAST analysis of the consensus sequences obtained
showed a homology of 97% to 100% with the respective species (Table A1).

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 3. Number and percentage of positive PCR results for gastric Helicobacter species in wild quails.

Wild Quails
(n = 6)

Gizzard

H. salomonis 6 (100%)
H. bizzozeronii 2 (33.3%)

H. felis 1 (16.7%)
H. pylori 1 (16.7%)

Co-infections were detected in 50.0% of the animals and different bacteria associations
were found: H. salomonis plus H. bizzozeronii (16.7%), H. salomonis plus H. pylori (16.7%) and
H. salomonis plus H. felis plus H. bizzozeronii (16.7%). These are novel results and constitute
new findings that report the presence of different gastric Helicobacter species DNA in birds.

Previous studies reported the detection of enterohepatic Helicobacter in wild birds’
faecal samples using PCR [21–23].

To the authors knowledge, this is the first time that gastric NHPH is detected in the
fundus/corpus of free range wild rabbits and NHPH and H. pylori DNA in the gizzard of
wild quails. This might indicate that wild rabbits and wild quails may act as reservoirs
and contribute to the H. pylori and NHPH environment dissemination, causing both Public
Health and One health concerns to arise. DNA extraction of the wild rabbit samples and
the wild quail samples was performed on different days. Disposable sterile scalpels and
tweezers were used to open the stomachs and, for each sample collection, a sterile dispos-
able Kruuse® Biopsy punch was used, rendering cross-contamination between samples
unlikely. It can, however, not be excluded that the presence of Helicobacter DNA in the
stomach from some of the animals tested is a consequence of recent contamination from the
environment, as described by [32]. Future studies using a larger sample size and including
histopathological analysis of gastric tissues is, therefore, necessary to confirm these findings
and to associate the presence of Helicobacter spp. with possible gastric alterations.

Wild animals, including leporids and birds, are known to be reservoirs for several
infectious and transmissible diseases [30,33], raising concerns regarding zoonotic pathogens
cross-species spillover [34]. The close contact of wild animals with domestic animals
and humans is continuously increasing due to different factors, which can drive the
zoonotic spillovers to become more common [29,34] and directly affect animal and human
health [30,31,33,34].

Hunting dogs and humans can be exposed to game pathogens through direct contact
with fresh carcasses, the handling or consumption of raw or undercooked meat or indirect
contact through contaminated water or the environment; thus, game wardens, hunters,
butchers and other wildlife professional duties are at high risk.
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Appendix A

Table A1. Wild rabbits and wild quails PCR positive results collection and sequencing data according to sample anatomical collection.

Animals
(n = 18)

Samples
(n = 30)

H.
bizzozeronii

Accession nr./
Homology * H. felis Accession nr./

Homology
H.

salomonis
Accession nr./

Homology H. pylori Accession nr./
Homology H.suis Accession nr./

Homology
H. ailuro-
gastricus

Accession nr./
Homology

H. heil-
mannii

Accession nr./
Homology

WR1 Fundus - - - - - - -

Corpus - - - - - - -

WR2 Fundus - + FQ670179
99.35% - - - - -

Corpus - - - - - - -

WR3 Fundus - - - - - - -

Corpus + FR871757
99.42% - - - - - -

WR4 Fundus - - + AJ130882
100% - - - -

Corpus - - + AJ130882
100% - - - -

WR5 Fundus - - + AJ130882
100% - - - -

Corpus + FR871757
100% + AJ130882

100% - - - -

WR6 Fundus - - - - - - -

Corpus + FR871757
95.08% - + AJ130882

100% - - - -

WR7 Fundus - - + AJ130882100% - - - -

Corpus - - + AJ130882
100% - - - -

WR8 Fundus + AF508003
97.11% - + AJ130882

100% - - - -

Corpus + FR871757
100% - + AJ130882

100% - - - -

WR9 Fundus - - + AJ130882
100% - - - -

Corpus - - + AJ130882
100% - - - -

WR10 Fundus - - + AJ130882
100% - - - -

Corpus - + JQ736360
100% + AJ130882

100% - - - -

WR11 Fundus - - + AJ130882
100% - - - -

Corpus + AF508003
100% - + AJ130882

100% - - - -
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Table A1. Cont.

Animals
(n = 18)

Samples
(n = 30)

H.
bizzozeronii

Accession nr./
Homology * H. felis Accession nr./

Homology
H.

salomonis
Accession nr./

Homology H. pylori Accession nr./
Homology H.suis Accession nr./

Homology
H. ailuro-
gastricus

Accession nr./
Homology

H. heil-
mannii

Accession nr./
Homology

WR12 Fundus - - + AJ130882
100% - - - -

Corpus - - - - - - -

Q1 Gizzard - - + AJ130882
100% - - -

Q2 Gizzard - - + AJ130882
100% - - -

Q3 Gizzard - - + AJ130882
100% - - -

Q4 Gizzard + FR871757
100% - + AJ130882

100% - - -

Q5 Gizzard + FR871757
100% + AF116580

97.12% + AJ130882
100% - - -

Q6 Gizzard - - + AJ130882
100% + CP024947

100% - -
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