

TECHNOLOGIES FOR PROCESS TRACEABILITY IN

THE SHIPBUILDING INDUSTRY

The West Sea Viana Shipyard case study

Pedro Xavier Mendes Araújo

TE
C

H
N

O
LO

G
IE

S
FO

R
 P

R
O

C
ES

S
TR

A
C

EA
B

IL
IT

Y
IN

 T
H

E
SH

IP
B

U
IL

D
IN

G
 IN

D
U

ST
R

Y

Escola Superior de Tecnologia e Gestão

2
0
2

3

INSTITUTO POLITÉCNICO DE VIANA DO CASTELO

Technologies for process traceability in
the shipbuilding industry: The West Sea

Viana Shipyard Case Study

Tecnologias para rastreabilidade de processos na
indústria naval: O caso de estudo

dos estaleiros West Sea Viana Shipyard

Pedro Xavier Mendes Araújo

Mestrado em Engenharia Informática
Escola Superior de Tecnologia e Gestão

Orientador: Prof. Doutor Sérgio Ivan Lopes

Orientador: Prof. Doutor António Miguel Rosado da Cruz

May 30, 2023

Resumo

A rastreabilidade de materiais e elementos em qualquer tipo de indústria é essencial e de grande
valor, embora atualmente esteja a ganhar ainda mais importância devido às fábricas da Indústria
5.0. Isto é importante no contexto do fabrico de qualquer produto, isto porque, permite que o
utilizador conheça a origem de um determinado produto, seja uma matéria-prima ou um compo-
nente fabricado através outros elementos, posteriormente fabricados. Esta cadeia de informações
rastreáveis pode ser mantida através de várias tecnologias, uma das quais é o ‘blockchain’. Este
conceito de rastreabilidade é aplicado em qualquer tipo de indústria de alguma forma, mas por
vezes existem métodos mais adequados que podem até acrescentar valor ao produto final.

Portanto, este processo permite a rastreabilidade dos componentes de produtos em toda a
cadeia de fabrico, desde a matéria-prima até o produto final, passando por cada componente inter-
mediário e etapa do processo, em todos os participantes industriais da cadeia de fabrico. As in-
formações geradas durante o processo de fabrico, incluindo certificados e resultados de inspeção,
também são registadas e, portanto, rastreáveis.

Na indústria naval, é essencial garantir altos níveis de qualidade durante o processo de fabrico.
Para isso, é importante selecionar os métodos e tecnologias adequados para a rastreabilidade dos
processos, considerando as exigências e restrições específicas da indústria naval. Desta forma, o
cliente pode ter as informações de qualquer material, componente, peça e bloco do navio de forma
simples e confiável. A rastreabilidade do processo pode acrescentar valor ao navio, pois todas as
informações rastreáveis podem ser facilmente transferidas para o cliente final, incluindo todos os
certificados e documentos necessários.

Nesta tese é proposta uma arquitetura de sistema centrada em tecnologia ‘blockchain’ que
promove a rastreabilidade dos processos de produção aplicados à indústria naval, com base no
Estaleiro West Sea Viana.

O sistema será implementado como um caso de estudo no processo de fabrico de um bloco de
construção naval e, portanto, prontamente extensível ao processo geral de fabrico de navios, con-
tribuindo assim com uma ’blockchain’ contendo ou referindo-se a todos os documentos relevantes
(certificados, garantias, etc.) e outros dados de fabrico pertinentes que podem ser entregues ao
cliente junto com o navio, aumentando assim a confiabilidade. Além disto, é também feita a im-
plementação de duas provas de conceito de interfaces visuais, tudo isto é testado com informação
proveniente do Estaleiro West Sea Viana e validado pelos mesmos.

i

Abstract

Traceability of materials and elements in any type of industry is essential and of great value,
although it is currently gaining even more importance due to the factories of Industry 5.0. This
is important in the context of the manufacture of any product. This allows the user to know
the origin of a particular element, whether it is a raw material or a component made of other
previously manufactured elements. This chain of traceable information can be persisted by several
technologies, one of which is the blockchain. This concept of traceability is applied in any type of
industry in some way, but sometimes there are more appropriate methods that can even add value
to the final product.

Therefore, this process enables the tracking of products’ components throughout the chain of
production, from raw materials to the final product, passing through each intermediate component
and process stage, on every industrial player in the chain. The information generated through
the manufacturing process, including certificates and inspection results, is registered and thus
trackable.

In the shipbuilding industry, the process of building a ship is complex, has several stages, and
it is important to guarantee high-quality levels during the manufacturing process. For this, the
methods and technologies adopted for process traceability must be selected, having in mind the
specific requirements and constraints of the shipbuilding industry in the most efficient way. In
addition, process traceability may add value to the ship, as all the traceable information may be
easily transferred to the end customer. This way, the customer can have the information of any
material, component, part, and block of the ship easily and reliably, as well as all the certificates
and documents necessary for any process.

This thesis proposes a blockchain-centered system architecture that fosters the traceability
of the production processes applied to the shipbuilding industry, based on the West Sea Viana
Shipyard.

The system will be implemented as a case study in the manufacturing process of a shipbuilding
block, and therefore readily extendable to the overall ship manufacturing process, thus contributing
with a blockchain containing or referring to all relevant documents (certificates, warranties, etc.)
and other pertinent manufacturing data that can be delivered to the customer together with the
ship, and thus increasing trustability.

ii

Agradecimentos

É com grande satisfação e alívio que dou como terminada esta jornada que culmina na conclusão
desta tese. Gostaria de aproveitar este momento para agradecer a todos os que contribuíram de
alguma forma para a realização deste trabalho. Foram vários momentos de muito esforço, dedica
ção e aprendizagem, e nada disso teria sido possível sem o apoio de determinadas pessoas. Assim,
neste espaço, quero expressar a minha gratidão a todos que fizeram parte desta trajetória.

Agradeço, em primeiro lugar, à minha família, que sempre esteve ao meu lado e me apoiou
em todas as etapas. Sem o incentivo e o suporte incondicional dos meus pais, avó e tia, não teria
chegado até aqui.

Agradeço também aos meus amigos, que foram verdadeiros parceiros durante essa jornada. As
suas palavras de encorajamento, conselhos e amizade foram fundamentais para que não desistisse
em momentos difíceis.

Não posso deixar de mencionar os meus orientadores, António Cruz e Sergio Lopes, que me
guiaram durante todo o processo de pesquisa e escrita desta tese. Os seus concelhos, sugestões e
críticas foram fundamentais para o desenvolvimento do meu trabalho.

Por fim, agradeço à minha namorada, Cláudia Ribeiro, que sempre esteve presente, apoiou-me
e incentivou-me a não desistir em nenhum momento. A sua compreensão, amor e paciência foram
fundamentais para que eu me pudesse dedicar ao máximo a este projeto.

A todos vocês, muito obrigado!

Pedro Xavier Mendes Araújo

iii

“Technology is best when it brings people together.“

Matt Mullenweg

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Goals / Contributions . 3
1.4 Research Method - Design Science Research (DSR) 4
1.5 Document structure . 5

2 Background 7
2.1 Relevant Concepts . 7

2.1.1 Traceability in the Shipbuilding Industry 8
2.1.2 Programming Concepts . 11
2.1.3 Languages and Technologies . 14
2.1.4 Environment and Deployment . 18

2.2 Related Works . 21
2.2.1 Discussion . 22

3 Process traceability in the shipbuilding industry 24
3.1 System Modeling . 24

3.1.1 Functional Requirements . 24
3.1.2 Use Case Model . 25
3.1.3 Domain Model . 27

3.2 Proposed Architecture . 29
3.3 Implementation . 31

3.3.1 How the implementation was followed 31
3.3.2 Technologies . 37
3.3.3 Description and presentation . 39

4 Experimental Validation 61
4.1 Traceability System validation . 61
4.2 Identified problems . 63
4.3 Performance Tests . 64

5 Conclusions and Future Work 65
5.1 Pros, Cons, and Pain points to make the change for a system like this 65

5.1.1 Is it worth the change? . 65
5.1.2 Pros . 65
5.1.3 Cons . 66
5.1.4 Pain Points . 66

v

CONTENTS vi

5.2 Achievements . 67
5.3 Future Work . 67

References 69

A JSON examples 71
A.1 The “Activity“ property “inputProductLots“ . 71
A.2 The return of the Smart Contract operation “GetTraceabilityByReferenceNum“ . 71

B GitHub 73
B.1 General REST API . 73
B.2 Smart Contract . 73
B.3 Web Application . 73
B.4 Mobile Application . 73

C Printscreens 74
C.1 Swagger (Open API) implementation . 74
C.2 Code examples . 76
C.3 Mongo Express Service . 78
C.4 AWS S3 . 79
C.5 Blockchain Explorer . 81
C.6 Web Application . 82
C.7 Web Application before refactoring . 84
C.8 Performance Tests with JMeter . 86

C.8.1 Tests on the recursive function with depth n = 1 87
C.8.2 Tests on the recursive function with depth n = 5 88
C.8.3 Tests on the recursive function with depth n = 15 89

C.9 Performance Tests with JMeter . 89
C.9.1 Tests on operation “GET ProductLots“ 90
C.9.2 Tests on operation “CREATE ProductLot“ 91
C.9.3 Tests on operation “CREATE Activity“ 93

C.10 Unit tests on the most important methods of the General REST API 94
C.10.1 Setup for SmartContractServiceTest class 94
C.10.2 Unit test on the method “getAllProductLots“ 95
C.10.3 Unit test on the method “findProductLot“ 95
C.10.4 Unit test on the method “getAllActivities“ 96
C.10.5 Unit test on the method “getTraceability“ 96
C.10.6 Unit test on the method “createProductLot“ 97
C.10.7 Unit test on the method “createActivity“ 97
C.10.8 Unit test on the method “updateProductLotDocumentKeys“ 97
C.10.9 Unit tests on the method “download“ 98
C.10.10Results of the presented unit tests . 99

List of Figures

2.1 Standard blockchain traceability model as defined in [4] 8
2.2 Ship block manufacturing process . 9
2.3 Division of a ship into blocks. Image taken from [9] 10
2.4 Representation of Authentication vs Authorization 12
2.5 Frontend vs Backend representation . 13
2.6 REST API . 14
2.7 Blockchain structure (Image taken from [19]) 15
2.8 Blockchain security (Image taken from [11]) . 15
2.9 Example of usage of a smart contract . 16
2.10 Structure of decentralized applications (Image taken from [18]) 17
2.11 Docker and docker composer . 19
2.12 Cloud Computing architecture (Image taken from [6]) 20

3.1 Technical staff mobile app access use case diagram. 26
3.2 End user webpage access use case diagram. 27
3.3 Proposed data model . 28
3.4 Architecture of the process traceability system 30
3.5 Mobile login screen . 43
3.6 Mobile scan screens . 44
3.7 Mobile list and search screen . 45
3.8 Mobile list info screen . 45
3.9 Mobile simple component creation (Iron plate example) 46
3.10 Mobile component creation with documents (Steel plate example) 47
3.11 Mobile component creation with input components (Anchor example) 48
3.12 Mobile component creation input components association (Anchor example) . . . 48
3.13 Mobile help popup on the “Add component“ screen 49
3.14 Web login with basic validation . 50
3.15 Web login with user validation . 50
3.16 Activity Designation creation popup . 51
3.17 Activity Designation list after creation . 51
3.18 Activity Designation update popup . 52
3.19 Activity Designation list after update . 52
3.20 Activity Designation delete alert . 52
3.21 Activity Designation list after delete . 53
3.22 Users create popup . 53
3.23 Users list after create . 53
3.24 Users update popup . 54
3.25 Users list after update . 54

vii

LIST OF FIGURES viii

3.26 List of products (components) . 55
3.27 Products (components) documents - 1 . 55
3.28 Products (components) documents - 2 . 56
3.29 Products (components) traceability representation with a graph 56

C.1 Swagger UI . 74
C.2 Swagger authentications with bearer token . 75
C.3 Swagger example request . 75
C.4 Swagger example response . 76
C.5 Smart Contract Entities . 76
C.6 Smart Contract function to build the traceability of a ProductLot 77
C.7 Mongo Express . 78
C.8 Collections on Mongo Express . 78
C.9 Documents on Mongo Express . 79
C.10 Buckets on S3 . 79
C.11 Folders on S3 . 80
C.12 Documents on S3 . 80
C.13 Document Information on S3 . 81
C.14 Blockchain Explorer Dashboard . 81
C.15 Blockchain Explorer Chain codes . 82
C.16 Blockchain Explorer Transaction details . 82
C.17 Client View . 83
C.18 Employee View . 83
C.19 Admin View . 84
C.20 Old web login page . 84
C.21 Old web menu . 85
C.22 Old web activity designations page . 85
C.23 Old web users page . 85
C.24 Old web products page . 86
C.25 Old web traceability page . 86
C.26 Tests with depth n = 1 . 87
C.27 Tests with depth n = 5 . 88
C.28 Tests with depth n = 15 . 89
C.29 Setup for the operation “GET ProductLots“ . 90
C.30 Request used on the operation “GET ProductLots“ 90
C.31 Results of the operation “GET ProductLots“ . 91
C.32 Setup of the operation “CREATE ProductLot“ 91
C.33 Request used on the operation “CREATE ProductLot“ 92
C.34 Results of the operation “CREATE ProductLot“ 92
C.35 Setup of the operation “CREATE Activity“ . 93
C.36 Request used on the operation “CREATE Activity“ 93
C.37 Results of the operation “CREATE Activity“ . 94
C.38 Setup of the SmartContractServiceTest class . 95
C.39 “getAllProductLots“ unit test . 95
C.40 “findProductLot“ unit test . 96
C.41 “getAllActivities“ unit test . 96
C.42 “getTraceability“ unit test . 96
C.43 “createProductLot“ unit test . 97
C.44 “createActivity“ unit test . 97

LIST OF FIGURES ix

C.45 “updateProductLotDocumentKeys“ unit test . 98
C.46 “download“ unit tests . 98
C.47 Results of the unit tests . 99

List of Tables

3.1 Table of Smart Contract Operations . 35

x

Acronyms

Amazon S3 Amazon Simple Storage Service
API Application Programming Interface
APP Application
AWS Amazon Web Services
CLI Command-Line Interface
CORS Cross-Origin Resource Sharing
CRUD Create Read Update Delete
CSS Cascading Style Sheets
DApp Decentralized Application
DSR Design Science Research
FTP File Transfer Protocol
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
JAR Java ARchive
JRE Java Runtime Environment
JS JavaScript
JSON JavaScript Object Notation
JVM Java Virtual Machine
JWT JSON Web Tokens
OOP Object-Oriented Programming
ORM Object Relational Mapping
P2P Peer To Peer
POC Proof Of Concept
PWA Progressive Web App
REST Representational State Transfer
RxJS Reactive Extensions Library for JavaScript
SaaS Software as a Service
UI User Interface
UX User Experience
VM Virtual Machine
WORA Write Once Run Anywhere
WWW World Wide Web

xi

Chapter 1

Introduction

This work aims to analyze, design, and develop a system that can effectively trace all the compo-

nents of a ship during its manufacturing process (including related documents), using blockchain

technology. By creating a secure and reliable history of the ship’s data, the system can add value

to the ship. The West Sea Viana Shipyard will serve as a case study for the implementation of this

system.

The first chapter of this document presents the motivation for carrying out this project. The

problem statement is then discussed, followed by the project’s goals and contributions. Finally,

the chapter concludes by outlining the structure of the entire document.

1.1 Motivation

Traceability in manufacturing, for any type of industry, enables the tracking of products’ compo-

nents throughout the production chain, from raw materials to the final product, passing through

each intermediate component and process stage, on every industrial player in the chain [2]. The

information generated throughout the manufacturing process, including certificates and inspection

results, is registered and therefore traceable. In [8], Beyhl et al., present an overhaul idea of what

the traceability enables for any kind of industry is given:

“...traceability enables a semi-automatically documentation of the innovators’ jour-

ney, enables the generation of documentation, including cross-references, and there-

fore makes the final handover more complete...“

In the shipbuilding industry, the process of building a ship is complex, as it is described in [9].

This process has several stages, which are described in [10], being important to guarantee high-

quality levels during the manufacturing process. For this, the methods and technologies adopted

for process traceability must be selected, having in mind the specific requirements and constraints

of the shipbuilding industry in the most efficient way. In addition, process traceability may add

value to the ship, as all the traceable information may be easily transferred to the final client. This

way, the customer can have the information of any material, component, part, and block of the

1

Introduction 2

ship, easily and reliably, as well as all the certificates and documents necessary for any process,

following the standards of the classifier society [22].

In order to fulfill the need of a traceability system that targets the shipbuilding industry, this

work presents a case study with a company that is an international reference in the naval sector,

the West Sea Viana Shipyard. The system is implemented along with two interfaces that work as

proofs of concept to show how the system can be used.

The final goal is to implement a system that will help the users to easily see the full traceability

of any element in a safe and structured way with the usage of blockchain to ensure the trustability

of the data.

1.2 Problem Statement

The traceability of the parts and components used in the manufacturing process of a given prod-

uct is a relevant topic that has been fostering value increase in the value chain, as a result of the

increasing availability of technology enablers (e.g., Internet of Things (IoT) or Distributed Ledger

Technologies (DLTs)). Traceability technologies and methods enable the user to know the origin

of a particular element, whether it is a raw material or a component made of other previously man-

ufactured elements. This chain of traceable information can be persisted by several technologies,

one of which is the blockchain. One of the most obvious advantages of traceability is the ability

to quickly know where a part is, where it came from and where it went during its transport. An-

other advantage is, in the case of the automotive or heavy metalworking industries, the ability to

track the parts of a batch when a defect is detected, thus enabling its quick replacement to achieve

high-quality standards and meet the needs of buyers.

The traceability of the elements or components used for the manufacturing of a given product

is something important that is gaining more value today, mainly due to technological advances

that the paradigms Industry 4.0 and Industry 5.0 have been continuously pushing.

By applying traceability techniques and methods to the shipbuilding industry, in addition to the

ability to track parts of the ship during its manufacturing, we can also know other relevant types

of information, such as the percentage of recycled material on the entire ship, the provenance of

all its parts, their location if repairs are required, the quantity used of a given component, and

also the possibility of associating to each component its invoice/receipt and quality certificates,

following the standards of the classifier society [22], both of the supplier and of each process of

the production chain. The use of a blockchain-based system for traceability, ensures the regis-

tering of information in a decentralized, transparent and trustable way, avoiding counterfeits and

untracked changes. This transparency of the data registry also ensures confidence in the data by

the customer, adding value to the components/parts/raw materials that are used in building a ship.

It should also be considered that a historic with manufacturing data will be created, leading to

faster detection and correction of possible failures. Besides that, for the customer to easily con-

sult the information, a Web App/Mobile App can be created for accessing this blockchain-based

traceability information and reveal it to the user in a friendly and interactive way. Taking this into

1.3 Goals / Contributions 3

account, the sale of a ship would have added value, because the customer is not limited to buying

a ship, but also a chain of information of all its components.

1.3 Goals / Contributions

Taking into account the importance of traceability to any type of industry, and in the particular

case of the shipbuilding industry, the objectives for this project are:

• The study of the traceability in general and in the particular case of the shipbuilding industry

and how the blockchain can add value to this sector;

• The design of a model that can support all relevant data and properties to maintain on a

blockchain (and what to maintain off chain) to deliver to the client alongside the final prod-

uct, in this case, the ship itself. This information will refer to all raw materials, materials,

components, parts, blocks, and all documents and certificates, following the standards of the

classifier society [22], thus creating a chain of reliable and immutable information available

to the company and to the customer;

• The development of a blockchain-based backend registry platform for components and pro-

vision of traceability information applied to the manufacturing process of a block of a ship,

knowing that this process can be replicated for any other block.

Each stage of the production chain of a block of a ship will be traced from its beginning to its

end. On the blockchain, there will be associations with references to documents and certificates

of each component from any origin (supplier countries), whether these are certificates of quality,

warranty, origin, or even navigability. This way, all certificates can be accessed easily and from

anywhere, recursively from an item to be tracked, to all its components.

Several things are aimed to be achieved and developed during this project in order to achieve

the minimum valuable product:

• Scientific Paper, in order to build a product that makes sense and that adds value to the ship-

building businesses, a lot of research was made about how these kinds of products are made

and what already exists. All this knowledge allowed us to design an innovative product, and

with that it was also possible to write and publish a scientific paper that improves and helps

the community to grow. This paper was published on an international conference with the

title IoT and Blockchain Technologies for Process Traceability in the Shipbuilding Industry,

[3].

• Architecture design, one of the first steps to build a viable product is to design a solid

architecture that uses the right tools for the job and all the necessary communications. This

allowed the development to go a lot more smoothly without the need to wonder about what

to do next or how to do it.

Introduction 4

• Smart Contract with API, being a blockchain based product, this had to be the first part of

the actual development, with a strong base it is possible to build the other parts around it.

From this, we get an authenticated API that can only communicate with the smart contract.

This smart contract is responsible for the main storage and traceability operations.

• Cloud solution to store files, this kind of storing is used nowadays in order to keep the

hosting platform less heavy, and it provides a much safer platform and scalable platform, it

is a good solution, it can evolve quite easily, and the files will always be available.

• Backend with basic authentication, the interface for all communication, it is the only possi-

ble way to interact with the system, and it is the place where all the business logic happens.

It as an autogenerated documentation, testing platform, and it has JWT based authentication

to ensure the safety of the system.

• Web application, the main way for the clients/users to interact with the system. It is a POC

that show one possible implementation of a web app with only the required features for a

user/client to work with.

• Mobile application, the main way for the employees to use the system. It is also a POC that

shows how the employees could use the system in a day-to-day basis.

• Experimental Validation, it shows how the application performed with real data from The

West Sea Viana Shipyard and how they evaluated the system.

1.4 Research Method - Design Science Research (DSR)

Design Science Research (DSR) is a research approach that focuses on the creation and evaluation

of designs, artifacts, and systems that address practical problems and meet specified requirements.

The goal of DSR is to generate knowledge and understanding about how to design and create

effective and useful artifacts, systems, and solutions that can be applied in real-world settings.

DSR is often used in fields such as computer science, engineering, and management, where the

focus is on developing practical solutions to complex problems. DSR projects typically involve

the development and testing of prototypes, and the evaluation of their effectiveness in addressing

the problem at hand.

DSR differs from other research approaches, such as basic research or applied research, in that

it is focused on the design and development of practical solutions, rather than on the discovery of

new knowledge or the application of existing knowledge to solve problems. This focus on design

and development makes DSR a unique and valuable approach to research, as it allows researchers

to create solutions that are tailored to specific needs and requirements.

The steps used to implement DSR are:

1. Identify a practical problem that needs to be addressed: DSR is focused on addressing real-

world problems, so it’s important to start by identifying a problem that you want to solve.

1.5 Document structure 5

2. Define the requirements and constraints of the problem: Once you have identified a problem,

you should define the requirements and constraints of the problem, including any technical,

economic, or social constraints that need to be considered.

3. Develop a design or solution: Based on the requirements and constraints of the problem, de-

velop a design or solution that addresses the problem. This can involve creating a prototype

or prototype of the solution and testing it to see how it performs.

4. Evaluate the design or solution: Once you have developed a design or solution, you should

evaluate its effectiveness in addressing the problem. This can involve collecting data, run-

ning experiments, or conducting surveys to assess the performance of the design or solution.

5. Disseminate the results: Share your findings with others through publication in academic

journals or conferences, or through other means such as blogs or online platforms.

By implementing DSR, we need all this steps instantiated for this context, so we have the

following contextualized steps:

1. Identify a practical problem that needs to be addressed: The problem is described in Sec-

tion 1.2.

2. Define the requirements and constraints of the problem: All the requirements and constraints

are presented in Section 3.1.

3. Develop a design or solution: The developed solution is presented in total in Chapter 3.

4. Evaluate the design or solution: The validation is made on Chapter 4.

5. Disseminate the results: The results presented in Chapter 5.

It’s important to note that DSR is an iterative process, and you may need to go back and revise

your design or solution based on the results of your evaluations. Additionally, DSR projects often

involve collaboration with other researchers and practitioners, so it may be helpful to work with a

team or seek feedback from others as you progress through the research process.

1.5 Document structure

This document is structured in 5 main chapters.

The Chapter 1 is the Introduction, here is presented the motivation, the problem statement,

the goals, and contributions that are planned to add to the project and the complete document

structure.

The Chapter 2 is the Background and consists on the presentation of the essential concepts for

this project, here it is presented the relevant concepts with some theoretical introduction and some

related works (Literature Review).

Introduction 6

The Chapter 3 describes the Process traceability in the shipbuilding industry. It presents the

proposed architecture for the system, system modeling and the actual development of the system

with the used tools and complete description of the implementation.

The Chapter 4 is the Validation, and it presents the experimental validation, the tests that were

used and some analysis to the results;

This thesis closes with the Chapter 5 that is the Conclusions and Future Work, here it is pre-

sented the conclusions regarding the obtained results and some possibilities about the future work.

Chapter 2

Background

In this chapter, it is presented the several concepts, terminologies, technologies, programming

languages and paradigms that are considered relevant for the context of this work alongside their

basic explanation, or with a more complex development in some particular cases. Besides this,

it is also presented the literature review that analyses several systems that present solutions for

traceability with blockchain centered applications and that target several industries, most of them

are a part of Industry 5.0 or Industry 4.0.

This concepts, technologies, and processes are presented in different sections. There is a sec-

tion for relevant concepts about traceability, another for environment and deployment concepts and

technologies, and a final section about technologies and concepts used for development. In some

cases, there are some processes shown in order to contextualize and to allow a better understanding

about the concepts themselves and how they interact and work together.

To close this chapter, the Literature Review is presented, this refers to several articles that

present solutions for traceability in several industries with blockchain based systems, those are

used mainly to understand how these systems are thought, how their architecture is done and,

mainly, what are the common issues that this systems face and how to solve them. It also allows

us to understand how innovative this project is in this particular industry and how it can improve

it.

2.1 Relevant Concepts

In this section, several relevant topics will be addressed related to the investigation and theoretical

part of this project, as well as concepts deeply connected with the development and practical part

of the project.

It starts with the explanation about the traceability applied to the shipbuilding industry with

focus on the manufacturing process of a ship, how the traceability is applied and how they manage

documents, these topics are specific for the case study company, The West Sea Viana Shipyard

[20].

7

Background 8

Then, some programming concepts are addressed, this concepts refer to what is going to be

implemented, how it will be done, the conventions that are followed and terms that will be used

during the next chapters to explain how some specific problems were solved during the develop-

ment phase of the project.

After that, the programming languages and technologies used for the development phase are

addressed, in here, some concepts are just briefly or theoretical explained because they will be

addressed again in the next chapters to describe how the implementation was done. With that in

mind, some technologies are introduced and contextualized.

This section finishes with the concepts about environment and deployment, again, in here

these technologies are addressed only theoretically because they will be addressed again in the

next chapters, so some of them will be only contextualized.

2.1.1 Traceability in the Shipbuilding Industry

Taking into account the importance of traceability in any type of industry, the objectives defined

for this work have been, 1) the study of traceability in the shipbuilding industry; 2) the achieve-

ment and design of a model that defines all the characteristics and information that are relevant to

maintain on a blockchain for delivery to the final customer together with the ship. This informa-

tion must refer to all the raw materials, materials, components, parts, blocks, and all documents

and certificates, following the standards of the classifier company [22] corresponding, thus creat-

ing a reliable and immutable chain of information that shall be available to the company and the

customer. This system will be developed for the manufacturing process of a ship block, knowing

that this process can be replicated to any other block of any ship.

Figure 2.1: Standard blockchain traceability model as defined in [4]

Figure 2.1 represents the standard activities model used to describe traceability in a supply

chain, representing that each stage of this production chain will be traced from its beginning to its

end. This model can be applied to any type of industry, and in the context of this paper, it will be

applied to the shipbuilding industry, more specifically in the production process of a ship block.

Figure 2.2 represents an activities flow model of that process.

2.1 Relevant Concepts 9

Figure 2.2: Ship block manufacturing process

As stated earlier, references to documents, e.g., certificates, warranties, for any part and any

source (supplier countries) will also be associated with the blockchain information about each

part’s traceability, so that all certificates can be accessed easily and from anywhere.

For the practical case of this paper, a case study has been established with the West Sea Viana

Shipyard1 [20] , which is an international reference shipyard, located in the north of Portugal,

specialized in ship construction, repair, and conversion.

2.1.1.1 Shipbuilding Manufacturing Process

The process of building a ship has many complex steps. A ship is made of several blocks, as shown

in Fig. 2.3. These blocks are previously assembled separately and, when all the blocks are ready,

the ship assembly process begins. This process, which is described in detail in [9], consists of the

assembly of all the blocks that give rise to the complete ship.

1West Sea Viana Shipyard [20], Portugal, https://west-sea.pt

https://west-sea.pt

Background 10

Figure 2.3: Division of a ship into blocks. Image taken from [9]

The purpose of the case study is to put into practice the model and system presented, this will

be applied to the production process of a single type of block of a ship, but it can be applied to

any type of block. For this, it was drawn a sketch (cf. Fig. 2.2) of what is the process of producing

a block of a ship. This is just a sketch based on the process demonstrated in [10], and it is not

necessarily the process used by West Sea Viana.

With this model in mind, applied to the specific context of West Sea, the proposed solution will

be able to track any raw material, material, element, part, and block of a ship from its reception,

manufacture, or production to its assembly or delivery through any stage of the production process.

For this, all relevant traceability information will be stored in real-time on a blockchain that can

be consulted by the company and the customer. And, they also have access to documents and

certificates obtained or generated during all stages of the production process, which are saved on

an off-chain database.

2.1.1.2 Manufacturing Process Traceability

To understand more about the West Sea Viana shipbuilding process and the problems they need to

solve, a quiz with 20 questions that relate to functional traceability needs and requirements of the

manufacturing process has been made and presented to the company. This subsection addresses

the Traceability of the production process.

Regarding the traceability of The West Sea’s production process, it is currently done with their

internal database using two identifiers on each component. The components can be tracked when

needed, and all the smaller parts of each component can be traced back to their original component

(parent component). Also, the company follows the ship recycling process, which means they

keep track of all the information and inventory (assets and equipment) of every material, including

2.1 Relevant Concepts 11

materials harmful to the environment. The company also wants to keep all the information about

their production process, in case of any reformulation, and the information and details about the

inspection process are also properly referenced and kept. All materials have to be provided with

an identification label and their identification is carried out in that way. The identification of the

origin and supplier of each material and the association of each sub-part with its parent component

is assured by the suppliers and the company only needs the final certificates of conformity, quality,

and approval. As the last thing, the company does not need to know which operator worked on a

specific component, they only need to know the company that they belong to.

2.1.1.3 Document Management during Manufacturing

Regarding the issuance of certificates, they can be requested at any time before the design phase

is over. The material certificates are issued through tests carried out by certified inspectors, and

origin certificates are issued by the suppliers and delivered in the final phase. There is no need

for these certificates to be in paper format, so they are sent by email in a PDF format, and they

are stored on a centralized database within the company network. Also, these documents are not

associated with the component’s invoice, but they are with the purchase order. These certificates

are made available to the customer from an internal system, as a small part of the final document

delivery process, which includes operation and maintenance manuals and project schematics. We

also understood that the navigability certificate is issued by an authorized entity and that only the

Technical and Test Coordination Department has access to that certification information.

2.1.2 Programming Concepts

In this section, some concepts about programming are addressed, this includes basic concepts

about different parts of the application (Frontend and Backend 2.1.2.4), different types of appli-

cations (Web 2.1.2.6 and mobile 2.1.2.7), patterns and ways of developing an application (API

2.1.2.5), security in the applications (Authentication and Authorization 2.1.2.1 and JWT 2.1.2.2)

and other concepts used during the development (Recursion 2.1.2.3).

2.1.2.1 Authentication and Authorization

In the tech world, more specially in the programming world there are two very important concepts

when we try to make any type of application secure, those two concepts need to be distinguished,

and they are Authentication and Authorization. The differences and different ways of how to use

them and implement them are well specified by the authors on [16] and we can also see a visual

representation on the Fig. 2.4.

Background 12

Figure 2.4: Representation of Authentication vs Authorization

Authorization, is the process performed by an application that determines if the user/client

has permission or access to the particular request that is making. There can be several types of

authorization, or even none if a particular request is open to the public.

Authentication, can be used by the server and by the client. The server uses authentication in

order to know exactly who is trying to access or making a request, but the client uses it to know

that the server is real (confirm the veracity of whom the server claims to be or do).

2.1.2.2 JWT

JWT is an industry standard RCT 7519 method for authentication between two parties, it uses a

signed token in base64 format that authenticates any web request, it contains JSON objects, that

commonly represent identifiers and claims, that allow the authentication to be made. This specific

type of token is composed by three essential parts, the Header, that contains the type of algorithm

used for the encryption and that also identifies the token as a JWT; the Payload that contains

specific fields of information or claims that will be used for the authentication; and the Signature

ensures that the token hasn’t been altered in any way, it is unique for each JWT. More specific

information about JWT and how to use it can be found on [1].

2.1.2.3 Recursion

In the context of programming, Recursion is a really important concept/technique that simply

represents an already active subprogram that is being invoked again, either directly by itself or by

any other subprogram. If we consider, a recursive function is a function that simply calls itself.

It is helpful in several situations, specially to make the code more readable and simple, but it can

make usage of too many errors and cause stack overflow errors. This concept can get a lot more

complex with some specific patterns [5].

2.1 Relevant Concepts 13

2.1.2.4 Frontend and Backend

Frontend and Backend are important concepts in programming (Figure 2.5), specially when devel-

oping for the web. The frontend is also referred to as the ’client side’ of the application, it includes

everything that the user can directly interact with, we can also, arguably, say that the UI/UX are a

part of the client side including responsiveness (in case of the web). The backend represents the

’server side’ of the application, and it is the part that the users cannot directly interact with, their

responsibilities include the handling and storing of data as well as all the business logic.

Figure 2.5: Frontend vs Backend representation

Both the client side and the server side need to be able to communicate with each other in

order to build a fully operational application, but it does not mean one can work without the other,

this is absolutely true for the backend because it does not depend on the frontend, in the other side,

most times the frontend depends on the backend, so it cannot work without it.

2.1.2.5 API

APIs are mechanisms that allow several software components/services/applications to communi-

cate with each other without the need to know how they are implemented, we can even say that is

works as a middleware/intermediary between applications. They are useful for every part involved

in the business of the software because it simplifies how applications integrate in existing (or new)

architectures.

A REST API defines a set of methods like GET, POST, PUT, DELETE, between others, that

the client can use to access the server. It doesn’t necessarily have a graphical interface, but it can.

More specific information about REST can be found on [24] and a graphical representation can be

found on Fig. 2.6.

Background 14

Figure 2.6: REST API

2.1.2.6 Web APP

A web application is a piece of software accessible only by using a web browser, and it is com-

posed by a frontend and a backend 2.1.2.4. Different from a website, a web application is interac-

tive, and it lets the user manipulate content, a website is usually just static data and there are no

interactions.

2.1.2.7 Mobile APP

A mobile application is a piece of software developed specifically to be used on a mobile device,

such as a smartphone or tablet. There are three main types of mobile applications: native apps,

hybrid apps and progressive web apps. In a very basic way, a native app is made to run on a

specific platform or device (Android or IoS); a hybrid app has different aspects of web apps and

mobile apps, but they can be thought as web apps in a native app container, they work as both and

they are usually built for the web, IoS and Android at the same time; a PWA is a mobile app that

only needs the browser to run, they usually do not need an app store to be downloaded, a browser

will work.

2.1.3 Languages and Technologies

In this section, some technologies used in the project are addressed, most of them are only intro-

duced or contextualized because they will be address again later during the development expla-

nation chapters, this includes programming languages (Java 2.1.3.5 and GO 2.1.3.7), blockchain

and web3 technologies (Blockchain 2.1.3.1, Smart Contract 2.1.3.2, Decentralized Applications

2.1.3.3 and Hyperledger Fabric 2.1.3.4), backend technologies (Spring and Spring Boot 2.1.3.6)

and frontend technologies (HTML5, CSS3, JavaScript 2.1.3.8, Angular and RxJs 2.1.3.9).

2.1.3.1 Blockchain

In a simple way, the blockchain is a system that stores data in a way that makes it almost impossible

to change, making it also impossible to hack the system. It is an immutable ledger (or a distributed

database) that is shared among the nodes of a computer network, and so it brings the assurance

of fidelity and security of a record and generates trust without the need for a trusted third party

2.1 Relevant Concepts 15

(Fig. 2.7). The blockchain systems are better known for their current role on cryptocurrency, that

is to maintain a secure and decentralized record of transactions. A key difference from a normal

database is that the blockchain stores data in blocks that are linked in the form of a chain, each

block stores a set of transactions which their hashes are stored as the header, this allows a quicker

and easier verification of individual transactions in a block (Fig. 2.8).

Figure 2.7: Blockchain structure (Image taken from [19])

Applying the blockchain to concepts like traceability, supply chains can be improved by en-

abling faster and more monetarily efficient delivery of products by also improving the coordination

between involved parties, and helping access to financing. Besides this, it provides transparency

related to the product’s information.

Figure 2.8: Blockchain security (Image taken from [11])

2.1.3.2 Smart Contract

Smart contracts are programs stored on a blockchain network that run when their conditions are

met, they are used to automate the execution of agreements, concede to all parties the certainty

of the agreed outcome (less time lost and without intermediary parties) and they are also used

to automate a workflow, a graphical example of this interaction is shown on Fig. 2.9. When the

subject is cryptocurrency, it allows a user to lock up their funds and release them when the smart

contract conditions are met, so when implementing banking products, a central authority is not

Background 16

needed anymore. With the usage of a smart contract, there is no need for a central server or agent

to trust, it defines the conditions that all parties agree. All involved parties run the smart contract

and always get the same result, this way all parties can be sure of the authenticity of the outcome

(outcome is always correct). It also opens a lot of possibilities for decentralized apps and removes

the need for expensive third parties (intermediaries). So when using a smart contract, we can

assume that a transaction made through it is traceable, transparent, and irreversible.

Figure 2.9: Example of usage of a smart contract

2.1.3.3 Decentralized Applications

Decentralized Applications are applications/programs that run on a blockchain or P2P (peer-to-

peer) network of computers, instead of relying on a single computer, and they are free of the con-

trol, interference, and competence of a single authority, a graphical comparison between normal

Apps and dApps can be found on Fig. 2.10. These applications provide safeguarding of privacy

and flexibility, but sometimes it is impossible to scale and, because they are the future, normal

FE frameworks are not adapted to dApp user interfaces (problems with identity and usage of the

blockchain world state, most cases need a BE/API to take care of all interactions). Some common

platforms used for the creation of dApps are: Ethereum or Hyperledger Fabric.

2.1 Relevant Concepts 17

Figure 2.10: Structure of decentralized applications (Image taken from [18])

2.1.3.4 Hyperledger Fabric

Hyperledger Fabric is an open source modular and distributed blockchain framework that acts as

a foundation for developing blockchain-based solutions/products, and applications. It allows the

plug-and-play of components and modules with a unique way to solve consensus within a network

without the need to sacrifice performance or privacy, this versatility eases the development and puts

this framework in a range of multiple use cases for multiple industries.

2.1.3.5 Java

Java is an object-oriented programming language that compiles to platform independent byte code,

this means it compiles directly to byte code that can run in any machine without recompiling by

executing the code through the JVM, for this, a machine just needs to have the JRE installed,

like most machines nowadays. This language follows the slogan of WORA, “Write Once, Run

Anywhere”.

2.1.3.6 Spring & Spring Boot

The Spring framework provides a complex but comprehensive infrastructure to develop applica-

tions in Java, and it has a lot of moderns to ease the development, decrease boilerplate code and

coding time like support for databases, security, tests, the following of patterns like MVC and

dependency injection.

Spring Boot is a framework built on the top of the Spring Framework that provides a faster and

easier way of setting up, configuring and run Spring applications. It helps to eliminate even more

boilerplate configurations/code, it provides more initial dependencies to simplify the development

of an application, it avoids a lot of the complexity of the application deployment by providing

an embedded server, and it simplifies the integration of other Java dependencies/frameworks like

ORM’s or structure converters.

Background 18

2.1.3.7 Go

Go is a compiled and statically typed programming language that focus on simplicity and effi-

ciency, it is a modern choice for high performance server side applications because it compiles

extremely fast.

2.1.3.8 HTML5, CSS3, and JS

HTML, CSS, and JS are the languages of the web, they are used together to build attractive and

interactive websites, and they are the base for most frontend frameworks.

HTML is a markup language that provides the basic structure of websites. CSS is a styling

language that is used to create layouts, format the structure and create attractive presentations. JS

is a programming language used to control the behavior of different elements on the website and

change its structure in order to make the website interactive.

2.1.3.9 Angular & RxJS

Angular is a frontend framework based on Typescript, and it is used to build user interfaces for

the web. It as a powerful CLI that generates most boilerplate code, and it comes preconfigured

with a lot of the most common modules and configurations like routing, testing frameworks and

style preprocessors. It is well known by having a long learning curve but as a result, it creates very

robust frontend applications.

RxJS is described in their documentation [21] as a library for reactive programming that uses

observable, which makes it easier to compose asynchronous or callback-based code, so it is used

for composing asynchronous and event-based programs by using observable sequences.

2.1.4 Environment and Deployment

In this section, concepts and technologies about the cloud are addressed alongside some general

concepts about the cloud environments, again, most of these concepts will be only introduced

or contextualized with a basic introduction because they will be addressed again during the next

chapters about the implementation. Here can be found concepts about containerization and virtu-

alization (Docker 2.1.4.1 and Virtual Machines 2.1.4.2), cloud technologies 2.1.4.3 (AWS 2.1.4.4)

and cloud storage (S3 Buckets 2.1.4.5)

2.1.4.1 Docker & Docker Compose

Docker is a technology for building, deploying, and managing containerized applications that can

run on any environment. A docker container virtualizes a single kernel OS, that allows the apps

that are run by it much faster, besides that, the main advantage is that an app that is virtualized

through a docker container can run in any machine in the same way because the environment is

always the same.

2.1 Relevant Concepts 19

Docker compose is a tool used to manage several docker containers, it allows developers to

compact all docker configurations on a single file in order to run all needed containers at the same

time, the same way every time. The difference between this and Docker is shown on the Fig. 2.11.

Figure 2.11: Docker and docker composer

2.1.4.2 Virtual Machine

A VM is a virtual environment that functions as a virtual computer system that works just like

any other physical computer, it as a CPU, memory, storage, and it can connect to the internet even

though it does not have the hardware of a physical computer. A VM is a virtual computer that runs

on a physical computer, but the operating systems work separately, and it is used to run programs

and deploy apps.

2.1.4.3 Cloud Computing

Cloud computing is the delivery of hosted services that are different computing services (like

servers, software, databases, storage) delivered over the Internet rather than keeping them running

on a personal hard drive, they can be saved in a remote server, the cloud computing architecture is

represented on Fig. 2.12. There are a lot of benefits to cloud computing, being the main ones:

• No need to buy powerful and expensive hardware, cloud computing can provide powerful

and faster servers;

• The services provided are extremely safe and highly configurable;

• Backups are automatically done, regular executed and distributed between several datacen-

ters, this way the data on the cloud computing servers are not going to be lost easily;

Background 20

• These services are highly and easily scalable;

An overview of cloud computing is well conducted on [17], and a good definition of cloud

computing that’s made there is:

“. . . cloud computing is a kind of computing technique where IT services are provided

by massive low-cost computing units connected by IP networks.”

Figure 2.12: Cloud Computing architecture (Image taken from [6])

2.1.4.4 Amazon Web Services

AWS is a well known comprehensive cloud computing platform provided by Amazon, distributed

on data centers from all over the world. It provides more than 200 highly configurable, scalable

and cost-efficient services and solutions. It is the most used cloud platform as it praises all the

cloud computing benefits in an easy and cost-efficient way has the costumer only pays for what it

is used by him.

2.1.4.5 Amazon S3 and S3 Buckets

Amazon S3 is an object storage service highly scalable, available, secure and performative. It is

also configurable and organizable, so it can be adapted to any use case and any user. On Amazon

S3, a bucket is a container where any number of objects can be stored.

2.2 Related Works 21

2.2 Related Works

The topic traceability in Industry 5.0 is introduced by Fraga-Lamas et al. in [14]. According

to the authors, it is not possible to achieve the expected objectives in this type of systems with-

out “a human-centered tracking” approach. So the technologies of self-identification of products

for automatic recognition, positioning, and tracking, without human intervention, are essential.

Although these types of technologies already exist, the authors make proposals for present and

future solutions to problems in this area. Analyses of several scenarios are made, with several

self-identification technologies, to find solutions to complex industrial problems. In this context,

a methodology is presented to select self-identification technologies for factories in Industry 5.0,

and to apply this methodology a specific use case of the shipbuilding industry was chosen. This

requires the identification of the main components of a ship during its construction and repair,

where passive and active UHF RFID tags were used on a patrol ship under construction, prov-

ing that it is also possible to identify, track and trace metal objects with very high-density areas.

In addition, the authors conclude that passive RFID (UHF – Ultrahigh-Frequency) technology is

ideal for traceability applications because they are smaller, cheaper, flexible, and can last a long

time without a battery, while active RFID can be used to manage stocks because they integrate

very well with other technologies, like GPS or sensors, and have a long read range. Thus con-

cluding with the ideal technologies to solve the proposed problems and with the implementation

and validation of the self-identification system in a patrol ship under construction. All research

and results obtained from the article [14] can be used in the proposed system for the traceability

of raw materials/components of a ship also including all associated documents/certificates (origin,

quality, guarantee), following the rules of the classifier society [22]. Based on the article [14] we

already know how to solve one of the possible major problems of this system, self-identification,

this way, with this knowledge it will be possible to implement a traceability system that, in ad-

dition to what was documented in the article [14], it also includes the traceability of components

during the construction of the blocks, and it can include the document management of certificates

associated with each component, subcomponent and raw material.

In [15], Froiz-Míguez et al., focus on state monitoring tracking. This aims to monitor and track

the health status of employees and events that may affect them through a decentralized real-time

tracking system. The system allows the provision of information relevant to the context of use

and ensures its availability. In addition, the information is stored on a blockchain, which ensures

the traceability and immutability of the data so that it can be shared with other stakeholders. In

this case, the information has been collected by sensors, storing it on a blockchain that acts as

a reliable data source, due to its immutability characteristics, where it can be accessed from any

location and be shared with any interested party, such as insurance companies or medical services.

The data collection is performed by sensors and transmitted in real-time to a decentralized system.

This can be an interesting way of acting, in the context of this project, if the blockchain traceability

data is sold to the buyer of a ship. This would enable them to monitor the ship’s construction and

assembly in real-time, through the blockchain, always with the certainty that the information is

Background 22

transparent and reliable. This way, the customer can be always aware of the state of the ship’s

construction even without direct contact with the company, allowing better communication and

trust between the parties involved. In addition, a “real-time” or “near real-time” system can be

used for the receipt and issuance of certificates/documents that are immediately associated with

raw material or part of the ship for an immediate consultation.

Wang et al. [23], address quality and safety problems in the management of materials in a

construction project. They propose a traceability model for the quality of the material used, that

is based on the mapping of the materials’ batches. Based on the batch quality feature, this model

associates the supply chain of materials using symbolic traceable objects, together three mapping

types are proposed for the material batches. With all this, the authors’ proposal addresses the de-

velopment of a traceable system of the quality of the supply of materials until the completion of

a construction project. This system is also able to track the quality of the material in the supply

chain. The proposed model can select critical control points for obtaining and transmitting infor-

mation, storing it in a traceability system, thus resolving problems of traceability of materials and

the entire supply chain. In [23], Wang et al. address problems in a construction project, in the

context of this project, much of the logic applied can also be reused in the context of the construc-

tion of a ship because the system proposed in this project will cover traceability in the process of

building elements of a ship. In addition, the feasibility and validity of the proposed system were

also proven through its application in the management of materials for a real construction project.

The quality control obtained with this system will be something to take into consideration during

the development of this system so that this control can be accessed by the company itself and by

the customer, thus ensuring greater confidence.

In [7], Beliatis et al. address, in a very specific way, the choice and implementation of digital

traceability technologies, aiming to improve the traceability of products in the process of produc-

tion of electronic products. Taking into account the specific case of the company with which the

case study has been made, this aims to technologically advance the requirements of industry 4.0,

such as digital traceability and IoT technologies. The authors analyze several traceability tech-

nologies, together with the needs of the company in question and its problems with the current

lack of traceability during the general production process, which includes a lack of optimization.

The main objective of this work was the evaluation and comparison of the best traceability and

IoT technologies to find an ideal solution for their case study, but also to fit into other types of

companies with similar problems. The authors present a methodology so that their case study can

implement an IoT and traceability solution that can solve their specific problems and perhaps also

similar problems in other companies.

2.2.1 Discussion

In the process of research and literature review, proposals for models and systems were found

that fit, in some parts, in the context of this project, in the article [14] traceability problems in

the naval industry associated with self-identification systems and technologies are addressed, in

this project, these types of systems will be addressed so that the most appropriate is applied in

2.2 Related Works 23

the case study, in addition to that, these data will be stored immutably and can be transmitted to

the customer in real time, to add value to the final product. The system proposed in the article

[15] collects data in real time and guarantees its availability to the end user, this system is used in

the context of collecting health data from employees of a company, in the context of this project,

the information will also be on a blockchain, but the information will only be available to the

employer, it will also be available to the end customer, who can access the information of their

ship at any time and, even during their construction, depending on the business rules adopted by

the case study company. These topics are also differentiators in relation to the system proposed in

[23], here quality and safety problems are addressed in a construction project and the proposal for

their resolution is through traceability.

In [7] a specific study is carried out for their case study, aiming to obtain a set of steps to

implement the most appropriate traceability system and with the best IoT technologies, in the case

of the proposed system, despite being applied in a specific case study, the system proposed in this

article can be applied, not only to the production process of any block and stage of a ship, but also

to most production processes within the naval industry.

Chapter 3

Process traceability in the shipbuilding
industry

In this chapter, it is presented the complete modeling of the system itself, the architecture that was

used to develop the system and how it was implemented. It is essential to mention that this chapter

is strongly connected to the chapter 2.1.1 and a lot of the information presented here is based on

that.

This chapter is separated into three sections: the System Modeling 3.1 that will present the

functional requirements, the different types of actors, what those actors can do in the system and

how the data was modeled in the system; the Proposed Architecture 3.2 that will present the

complete architecture of the system alongside a meticulous description of it; and the Implementa-

tion 3.3 that will present the implementation of the system, the tools that were used and how the

system was built.

3.1 System Modeling

In this section, it is presented the functional requirements of the system and how it was modeled.

Regarding the modeling, the different types of actors are also present and which actions they can

perform on the system. With this information, it is possible to show some use case diagrams that

will present graphically what a specific actor can do. Besides this, a domain model is also built in

order to present how the data was modeled in the system.

3.1.1 Functional Requirements

With the information available on the chapter 2.1.1, several requirements for a traceability solution

that also keeps track of associated documentation can be gathered:

- All the smaller parts of each component need to be tracked to their parent component and

vice-versa;

24

3.1 System Modeling 25

- Follow the ship recycling process (keep track of every material, all the information, and all

the inventory);

- Keep all the information about the production process;

- Keep all the information about the inspections;

- The documents need to be associated with a purchase order;

- Only the Technical and Test Coordination Department can access the navigability certificate

information;

- The traceability should be done using their current identification methods;

- There could be users with different access restrictions;

- All the information about a component should be stored;

- Components can have several documents associated;

- A document is associated with a component through an ID reference;

- All the stored information should always be available;

- The association between a component and a document can be done separately by a different

employee.

From these requirements, two main actors have been identified: a member of the technical
staff and an admin.

3.1.2 Use Case Model

The two main actors identified on the section 3.1.1 were:

1. a member of the technical staff that represents an employee, a user that uses the mobile

application to scan and add components or parts. This is the user that actually create the

traceability. This actor can:

- Authenticate himself using his employee ID;

- Scan a component;

- Associate the component with his parent/child component;

- Add a component manually;

- Associate a document to a component;

- Can verify the component he is working on;

- Can create a request to send all the component information to be stored into the

blockchain;

Process traceability in the shipbuilding industry 26

- Edit or delete the component he sent to be stored up to 30 minutes after he sent the

request (after that time he is not allowed to change);

- See basic information and associations of a component;

- Access restricted information, depending on their role.

The use case diagram for the technical staff actor is represented in Fig. 3.1.

Figure 3.1: Technical staff mobile app access use case diagram.

- an admin that is the user that uses the web application, and they can have different permis-

sions. An admin can be allowed only to visualize one ship (in case of a client), he can be

allowed to check existing users, and he can be allowed to manage different components/-

parts/materials; This actor can:

- See all blocks of a ship;

- See all components of a block;

- See all the associations of a specific component;

- Access the associated documents of a component;

- See a page with the complete ship represented in blocks;

- See a dashboard with relevant statistics about the ship

The use case diagram for the customer authenticated user is represented in Fig. 3.2.

3.1 System Modeling 27

Figure 3.2: End user webpage access use case diagram.

3.1.3 Domain Model

In order to structure the information and data on the applications, the data model presented in

Fig. 3.3 has been put forward. This model represents how the data is structured and where it will

be stored in the system architecture. With this, we can distinguish three types of storage for the

information:

- On-chain data: Represents the data that is going to be stored on the blockchain;

- Cloud data: Represents the data that is going to be stored on the cloud, using SaaS;

- Off-chain data: Represents the data that is going to be stored on a NoSQL database;

Following an object-oriented approach, we can identify the several models that will represent

the information on the system.

Process traceability in the shipbuilding industry 28

Figure 3.3: Proposed data model

3.2 Proposed Architecture 29

Analyzing the data model, we can see that the documents are going to be stored in the Cloud

using some SaaS like AWS EC2. The information about all the parts, components, and blocks

of a ship along with the information on the activities that transform all of these components into

other components will be stored on the blockchain because this is the information that allows the

traceability to be built and so that is, essentially, the information that needs to be captured. The

information about the users that can use the system will be stored on a NoSQL database off the

chain, along with the extra information about the ship’s components.

3.2 Proposed Architecture

As it was described earlier, two main actors have been identified for the problem at hand. For

these, two applications will be created: a mobile application and a web application.

The web application can be used by every user with a valid account, this account can be created

by a system administrator, and with it, the users can freely consult all the information about the

ship, its components, and all the documentation related to it.

The mobile application will be used by the technical staff, and it can be used to scan RFIDs

and QR codes as a measure to keep track of the information of each component and store it on the

system, with the correspondent documents. This application can also accept manual codes instead

of RFID tags/QR Code reading, depending on the device that is being used. This application will

be used by the different company workers, and they may use the application in different ways.

When the app is being used by, for example, a mechanical locksmith, he will be responsible for

scanning the tag on the components that he is working on and, if a component is being fractured

in several parts, he should also make the association of the smaller pieces with the parent compo-

nent. On the other hand, when, for example, a mechanical engineer uses the app, he will make

the association of the parts, including documents and certificates, with the corresponding parent

components.

Figure 3.4 depicts the system architecture, with all adopted technologies identified. As men-

tioned earlier, there are two different applications for two different types of users. The web appli-

cation is used by clients, and it allows them to consult the information about the ship components,

blocks, parts, and materials through an interactive, responsive, fast, and productive interface. This

web application can be accessed by any modern browser (Chrome, Edge, Firefox, Safari, . . .), and

it will be created using a modern Front-end framework like ReactJS or Angular.

The mobile application will be used by technical users or employees of the company, and

it allows the users to scan all types of components of the ship with a tag RFID or QR Code,

and associate information and documents/certificates to that particular component. This mobile

application will be Android native and created using Kotlin, and can be installed and used on any

Android device, ideally one that can scan RFID and QR Code tags. If the device running the

application is not capable of that, the system allows the manual insertion of data.

Process traceability in the shipbuilding industry 30

Figure 3.4: Architecture of the process traceability system

3.3 Implementation 31

These two applications will be communicating with a backend through a REST API. This

Backend, built with Spring Boot, will be responsible for all users and their interactions with the

system. The Backend will make use of a database for the system users and the documents’ storage.

The documents may also come to be stored in the Amazon S3 cloud service. Finally, the Backend

is also responsible to interact with the Smart contract API to save and retrieve traceability data

to/from the Blockchain. The Smart Contract API is a REST API, created with GO Lang, and

deployed on a Hyperledger Fabric Blockchain.

All these applications will be packaged into Docker containers except for the mobile appli-

cation. This way, the application’s source code, libraries, dependencies, and environment will be

standardized into executable components that can run anywhere. Besides that, they will be secured

with authentication and authorization protocols.

Regarding the Backend, the REST API will be secured using Spring Security which is a Spring

framework to help with authentication, this way only authenticated users will be allowed to com-

municate with the Backend. The Backend will also be responsible to retrieve information from

the Blockchain and the Cloud Service that stores the documents, but to get the correct documents,

an association needs to exist between the blockchain data and the documents on the cloud. This

association will be made upon the insertion of a document component data, the Backend will store

the document on the cloud and retrieve an identifier, that identifier will be added to the compo-

nent’s data before it is stored on the Blockchain. To retrieve a component’s document it will be

the reverse, the Backend will get the data from the Blockchain, and it will use the document’s

identifier to retrieve the document from the cloud.

3.3 Implementation

In this section, it is presented how the different applications and parts of the system will be im-

plemented, taking as the base the data model and the use case diagrams showed on the section 3.1

and the architecture presented in section 3.2. After this, all the tools that will be used will also be

referenced from the section 2.1 with a brief explanation of how and why they will be used. With

all this information, all the applications and parts of the system will be presented with a meticulous

description of them and the system itself.

3.3.1 How the implementation was followed

According to all the information presented in chapter 2 & chapter 3, this complex system can be

divided into different parts and applications. So, to build this system the following structure will

be used:

• Backend;

– Rest API;

– Smart contract;

Process traceability in the shipbuilding industry 32

• Frontend;

– Back office;

* Web application;

– Mobile application;

• Infrastructure;

– Database;

– Blockchain;

– S3;

We can see that the system is divided into three main sections, that being the backend, the

frontend, and the infrastructure. The backend, cf. Section 3.3.1.1, represents everything that has

to do with the server side of the system, all the business logic lives in this section as well as the

interaction with the database that will be used to store basic information, and the smart contract

that contains the logic to interact and execute operations on the blockchain.

The frontend cf. Section 3.3.1.2, represents the applications that the users will have contact

with, in this situation there are two applications, the mobile application and the back office that is

a web application. This particular section of the frontend will not be done from the scratch like all

the others, two pairs of finalist students from the IPVC(Instituto Politécnico de Viana do Castelo)

will work on the base for each application with the supervision of the Author and the advisor Prof.

Doutor António Miguel Rosado da Cruz. This way, these two base applications created by these

students will only need some adaptations to the case study business logic, this will be described in

the next sections.

The infrastructure cf. Section 3.3.1.3 of the system is a separate part itself, but it involves

all the other parts as well. This part represents where and how the different parts of the system

will run and its different environments. There in no production environment for any part of this

system but, for some time, some parts will be deployed on the cloud for other people to access,

this is important and essential specially because, as it was stated before, there are different people

working on a base for the two frontend application (mobile and web) so they need a server they

can access to get the information to use during their development.

3.3.1.1 Backend

By analyzing the architecture of the system, presented on the Fig. 3.4, we come to the conclusion

that the Backend of this system will be composed by three different applications. The main REST

API that will interact with an off-chain database and exchange requests with the Frontend and with

the Blockchain (thought some middleware application). The Smart contract REST API that will be

a secured REST API that has the only purpose of exchanging requests between the Smart Contract

and the general REST API, so it can be automatically generated or created by hand. The Smart

Contract that will be responsible for all interactions with the blockchain (CRUD functionalities)

3.3 Implementation 33

and for applying the necessary logic and operations to create the traceability of a part of the

ship. All these applications will be containerized into docker containers in order to facilitate the

execution and deployment of them unto different environments, this is important because besides

the local environment, all these backend applications will have to run into virtual machines so that

other stakeholder can consume them.

The main/general REST API will be the “interface“ consumed by the frontend applications, it

will be the only source of any information for the outside world. It will interact with an off-chain

database, that is represented on the data model presented on Fig. 3.3 with the color green. The

tables on the data model that represent off-chain data are: User, this table stores all the basic in-

formation of a user including username, password, and the roles so that the user can log in to the

applications that he has access; UserType, this table represents the roles that a use can have (EM-

PLOYEE, CLIENT, ADMIN), each role allows the user to access different parts of the system

and execute different operations, a Client can only access the web application, and he can only

see information of his ship, an Employee can access the mobile app and execute any operations

there and can access the web applications, and check the designations of activities and products,

while the admin can do all that and also CRUD operations on the activity/product designations and

CRUD operations and change the roles of the users; ProductType, represents the type of product

of the ship, it can be a Block, a component or a part, it can be augmented to fit different busi-

nesses; ProductDesignation, it represents the name/designation of a product, these designations

are managed by the admins on the web applications and used by the employees on the mobile

application to give a name to the product they are registering or tracing; ActivityDesignation, it

represents the name/designation of an activity, and it is managed and used in the exact same way

as the ProductDesignation table. Following the use case diagram of the technical staff presented

on Fig. 3.1, this represents the actions that a user with the role of “Employee“ can perform on the

mobile application, so the main REST API will have to implement the necessary business logic

to execute them, the same applies to the use case diagram of the end user presented on Fig. 3.2,

this represents the actions that a user with the role of “Client“ can perform on the web application

as well as getting the traceability of any product of his ship, besides this, a user with the role of

“Admin“ can access both mobile and web applications and perform actions on the web application

to execute CRUD operations on the Users, activity designations and product designations as well

as changing the roles of any user on the platform, also a user with the role of “Employee“ can also

access the web applications and view all the users, product designations, activity designations and

traceability of a ship without interacting with them.

The Smart Contract REST API will be automatically generated based on the Smart contract

implementation, and it is simply a “bridge“ between the main REST API and the Smart Contract,

an easy way of communication between these two applications, it is also worth mention that the

main REST API is the only application with permissions to communicate with this application.

The Smart Contract is fully responsible for all the interactions with the blockchain and for

building the traceability of a product. We can see on Fig. 3.3 the information that will be stored

on the blockchain, that is all the sensitive information for this case study that is also the data

Process traceability in the shipbuilding industry 34

used for building the traceability, that being the ProductLot, this entity represents a product (part)

of the ship, and it can represent a unique part of the ship or a lot of parts which have the exact

same specifications and which the quantity is more than zero. If we want to represent a unique

product, the flag “isSerialNumber“ will be set to true, when that is the case, the “referenceNumber“

will represent the serial number of the product, otherwise, if the flag “isSerialNumber“ is set to

false, the “referenceNumber“ will represent the reference number of the lot. Besides this, the

“designation“ is the name that came from the “ProductDesignation“ entity, the “productType“

is the name that came from the “ProductType“, the “initialQuantity“ represents the amount of

product that arrived or entered the system, if the product is unique, this amount will always be

1, otherwise it will be the inserted amount, while the “availableQuantity“ always starts with an

equal value as the “initialQuantity“ and it is decreased every time that product is used to create

another product. There is also the “documentKeys“, that is only filled if the product is associated

with some document (certificate/invoice/receipt), they represent a list of keys, that correspond to

a specific document that is stored somewhere in the cloud, and they can be used to retrieve those

documents; and the Activity, that represents any registered activity that receives some product(s)

of any quantity as an input and gives product, also of any quantity, as an output, it contains the

“designation“ that is the name that came from the “ActivityDesignation“ entity, the “userId“ tha

represents the ID of the user that performed this particular activity, the “dateTime“ that represents

the date and time when this activity was performed, the “inputProductLots“ that represents the

product(s) used as inputs for this activity, it can be read as a map where the key represents the

ID of the product that is being referred, and the values is the amount of product used (in case

of a unique product, this is always 1), an example can be found on Appendix A, Section A.1.

Besides this, the “Activity“ entity also has the “outputProductLot“ property that represents the

output resulting from the input product lots after the activity was performed.

This smart contract will only be consumed by the Smart Contract REST API, and it will allow

only some operations to be performed, these are:

The smart contract contains all the operations shown in Table 3.1, all of them can be used

internally, but they are not needed for all cases. All of them can also be used externally because,

an HTTP endpoint is generated for each operation on the Smart Contract REST API, but yet again,

not all of them need to be used, in a real situation, these endpoints would be disabled or converted

to internal functions, but for this example we have them enabled for testing purposed thought an

HTTP client (Swagger/Postman). The operations that are exclusively external are: “GetAllPro-

ductLot“, that will return all existing ProductLots; “GetAllActivities“, that will return all existing

Activities; “GetTraceabilityByReferenceNum“, that expects the reference number of a product

and will return the complete traceability of the referred product in JSON format, an example can

be found on Appendix A, Section A.2, this includes all the information of the productLot, the ac-

tivity that originated the product (it may not exist if the productLot was inserted manually without

an activity origin, for example a new shipment), the productLots used as inputs of that activity and

corresponding traceability of each one; “UpdateProductLotDocumentKeys“, that expects a list of

document keys and updates directly on the blockchain the property “documentKeys“ of a Product-

3.3 Implementation 35

Table 3.1: Table of Smart Contract Operations

Is used internally Is used externally
GetAllProductLot No Yes
GetAllActivities No Yes
GetTraceabilityByReferenceNum No Yes

ProductLotExists

Yes (CreateProductLot,
ReadProductLot,
ReadProductLotByReferenceNum,
UpdateProductLotDocumentKeys,
UpdateProductAvailableQuantity,
CreateActivity)

No

CreateProductLot Yes (CreateActivity) Yes
ReadProductLot Yes (CreateActivity) Yes

ReadProductLotByReferenceNum Yes (GetTraceabilityByReferenceNum,
CreateProductLot) No

UpdateProductLotDocumentKeys No Yes
UpdateProductAvailableQuantity Yes (CreateActivity) No
ActivityExists Yes (CreateActivity, ReadActivity) No
CreateActivity No Yes
ReadActivity No No

Lot by its ID, update operations are not common on on-chain data, but this specific situation is

required, so the users can associate documents with a productLot; and “CreateActivity“, that ex-

pects the name of the activity performed, the input productLots with corresponding used quantities

and the complete information of the output ProductLot alongside any documents to associate with

it. The operations that are exclusively internal are: “ProductLotExixts“, that simply verifies if a

productLot exists on the blockchain based on its ID and returns a boolean, this operation has this

sole purpose, and it is used on other multiple operations like “CreateProductLot“, “ReadProduct-

Lot“, “ReadProductLotByReferenceNum“, “UpdateProductLotDocumentKeys“, “UpdateProduc-

tAvailableQuantity“ and “CreateActivity“; “ReadProductLotByReferenceNum“, that will return a

ProductLot based on its reference number, this operation is used on “GetTraceabilityByReferen-

ceNum“ for this exact purpose and on “CreateProductLot“ to verify that the reference number used

to create a new ProductLot is not used by any other productLot; “UpdateProductAvailableQuan-

tity“, that expects a new quantity and will update the property “availableQuantity“ of a ProductLot

based on its ID, this operation is only performed during the “CreateActivity“ operation to reduce

the quantity of the used input productLots; and “ActivityExists“, that simply verifies if an activity

exists on the blockchain based on its ID and returns a boolean, this operation has this sole purpose,

and it is used on other operations like “CreateActivity“ and “ReadActivity“. Some operations are

used internally and externally to the Smart Contract, these are: “CreateProductLot“, that expects

the all the information of a ProductLot except the ID and the property “availableQuantity“, those

are defined internally and will create the new ProductLot on the blockchain; and “ReadProduct-

Lot“, that will return a ProductLot based on its ID. There is one other operation, the “ReadActiv-

ity“ that is not used at all, it was created to return an Activity based on its ID, but there was no

need to use it. All these operations have the expected logic on them to not allow productLots or

Process traceability in the shipbuilding industry 36

activities with the same reference numbers or IDs, and all the other common checks, verification,

and error handling for common operations. This smart contract and smart contract API live on

separate docker containers, the smart contract API consumes the smart contract and exposes one

endpoint for each operation described above that can easily be consumed by any HTTP client.

3.3.1.2 Frontend

Has it has been shown on the Section 3.1.2 and based on the requirements presented on Sec-

tion 3.1.1, this system will have two interfaces, each one is based on the requirements and use

case diagram of each actor of the system, those are represented on graphical representation of the

system, Fig. 3.4 on the Section 3.2.

It needs to be stated that these solutions were not totally made from scratch like the rest of

the system, with collaboration with the IPVC(Instituto Politécnico de Viana do Castelo), two pairs

of finalist students from the course of Computer Science and engineering worked on the base for

each application with the supervision of the Author and the advisor Prof. Doutor António Miguel

Rosado da Cruz. These students worked mainly on the interaction with the API and on several

points of the corresponding Frontend/Mobile technologies in order to improve their skills, but has

to be changed in order for their project to fit on the requirements of this dissertation, all those

changes will be addressed on the Section 3.3.3.2. Besides this, it also needs to be addressed that

the interfaces described here and shown on Section3.3.3.2 could easily be reworked to provide

a better UI/UX in order to improve the overall usability and experience of the users, but in this

dissertation, we focus on the actual system and backend as an all.

3.3.1.3 Infrastructure

For some parts of this system, an infrastructure was required because, has it was stated before, the

web and mobile applications will not be built from scratch but from a base built by students from

IPVC(Instituto Politécnico de Viana do Castelo), in order for them to work on these applications,

they needed to communicate with the general REST API and to be kept up to date with any changes

on any part of the backend, for that reason, the backend needs to be deployed. The ideal way is

to deploy in each application on the same environment but in order to keep the project free of any

charges, we had to go with free solutions, so AWS EC2 is the tool that will be used to host the

general REST API but to keep it free we can’t use to many resources so the Smart Contract and

the Smart Contract API had to be somewhere else, namely Googles’ Compute Engine because it

offered a free tier. And because all the application on the backend use docker and docker-compose,

it is very simple to set up everything on each virtual machine. On the general REST API, there is a

Dockerfile that is used to prepare the API for release and a docker-compose that is used to define,

not only the API service but two more, the MongoDB database and a MongoDB client that can be

used by the students to manage the testing database this way, on the AWS machine by just running

the docker-compose file all this services will be running. On the Googles’ Compute Engine VM,

3.3 Implementation 37

just by using the Hyperledger Fablo described on 3.3.2, we already have a docker image that we

can simply run.

Another part of the system that works on the cloud is the document storage, all the files that

need to be associated with any part of the system are sent to the general REST API, the API will

then create a fingerprint of that file based on SHA-256 digest calculation, generate a filename, send

the file to the AWS S3 correspondent bucket, and finally it will send the filename and fingerprint

to the blockchain where it will be associated with the corresponding ProductLot, has it is shown

on Fig. 3.3. This will assure the authenticity of the file, making sure that the file is always the

same, if there is any change it will be immediately detected, when the user tries to get the file,

the fingerprint stored on the blockchain and the fingerprint of the file that was stored are always

compared as a safety measure, this was any changes will be imminently seen.

3.3.2 Technologies

To build this system, a lot of technical decisions were made about the technologies to use to build

the different applications, some tools inside each application, the databases to choose, and much

more, in here we state the most relevant about each part of the system.

The main REST API was built with the Spring Boot framework using Java as the programming

language with all the common developer dependencies of this tech stack (JPA, Hibernate, Spring

Security, Lombok) and it was developing following the Spring Boot Architecture that is based on

the MVC architecture. This Spring stack was chosen simply because the Author was proficient on

it. To document the endpoints, the Open API Specification was used and implemented through a

spring dependency, this generates an interface that documents each endpoint and provides an easy

way to test them graphically. Regarding the database, the tables on the data model that will be

stored on this off-chain database don’t have any relationship between them, so it can be NoSQL,

the choice was MongoDB because it is very fast to query from and very easy to work with and

setup.

The smart contract was built with the Hyperledger Fabric framework, using Go as the pro-

gramming language to develop the Smart Contract, Fablo [12] it was also used, this is a tool used

to easily set up and generate a Hyperledger Fabric network that fully runs on docker, besides that,

it also provides a Blockchain explorer (print screens can be found at Appendix C.5) and a REST

API Client (Fablo REST) that generates a secured REST API interface to interact with the Smart

Contract, that is the Smart Contract REST API described on the Section 3.3.1.1. For development

purposes, Microfab that simply provides a single docker container image to quickly develop and

test the smart contract. This all Hyperledger Fabric was described early on the Section 2.1.3.4, it

is a great choice for the development of the smart contract due to the advantages described early

but the main reason why it was chosen was because the development is faster and the tools like

Fablo and Fablo REST provide a very easy way to interact with the smart contract and if we take

into consideration that this system is already complex with a lot of moving parts, we tried to keep

it simple when we could. The programming language of choice for the development of the smart

contract was Go because it generates very fast and safe programs with all the modern syntax. The

Process traceability in the shipbuilding industry 38

programming language could be JavaScript with Node or Java has Hyperledger Fabric has support

for those three. The blockchain platform used for the Smart Contract could also be Ethereum, but

the purpose of the Smart Contract created with it are more for completely decentralized applica-

tions and are for mass consumption, this is not the case for this system.

The web application was built using Angular and Typescript with some JavaScript libraries

to perform certain tasks that are not natively supported by the Angular framework like build a

graph (D3) or a PDF viewer (ng2-pdf-viewer). Some other options were considered to build this

application, like Vue and React that are also JavaScript frameworks, but besides Angular only

React was really considered because the development is way faster and the amount of community

and packages that exist are way better, nonetheless Angular was chosen as it has native support

for Typescript it forces the developer to follow their good pattern. React also supports Typescript,

but it is not as good and easy to use, and it is easier to create spaghetti and confusing code because

React does not follow a strict pattern like Angular.

The mobile application was built natively with Android and Kotlin, with an extra dependency

in order to implement a PDF Viewer (AndroidPdfViewer). There were non-native options but, has

it was explained in Section 3.2 this application will only run on Android devices, so it makes sense

to make it native as native mobile apps are built for a specific operating system and are compiled

using the platform’s core programming language and APIs, so they are much efficient, faster and

responsive. The obvious con of this choice is that if, for some reason, this application needs to run

on an IOS device, the application needs to be totally built from scratch without being able to reuse

almost anything beside logic. For the programming language, Java was also an option, but Kotlin

is the recommended language to develop Android applications, it has a lot more modernities in

terms of syntax and speed compared to Java, and they are both languages that run on the JVM, so

the knowledge from Java can be transferred to Kotlin.

The infrastructure was composed with several tools, Docker and docker-compose were chosen

to make it easier to run every part of the system in consistent manner in any machine and also to be

easier to deploy using the docker-compose file it is just a matter of running it on a virtual machine,

and we have everything setup. For the hosting, only the backend of the system was deployed but

split into two different parts: the general REST API was hosted on AWS and the Smart Contract

and Smart Contract API was hosted on Googles’ Compute Engine, this was chosen because AWS

allows a very cheap hosting of around C0.4/month for this API on a standard EC2 VM but if we

included the Smart Contract and Smart Contract API the price would be much bigger as we had

to increase the hardware usage on the VM, to solve this problem we made use of the 3 months

free tier of Googles’ Compute Engine and hosted the remaining parts of the backend there. To

connect with these two different VMs it was used SSH and for transferring files it was used FTP.

It was mentioned on the Section 3.2 that the documents associated with any part of the ship will

be stored on the cloud, for that purpose AWS S3 2.1.4.5 was used, this tool was chosen because it

was already part of an environment used on this system (AWS) and because it is easy to use and

implement.

3.3 Implementation 39

Some other tools used during the development of the system are FileZilla that is an FTP soft-

ware tool that allowed the exchange of files between the AWS and the Googles’ Compute Engine

and the local system of the Author. To develop all the parts of the system, multiple IDEs and code

editor were used but almost all of them are from the same provider, that is JetBrains, this was on

purpose because this way, the knowledge from one IDE is transferred to another, the development

is faster, and each different IDE is optimized to a specific set of Languages and Frameworks, so

here follows the list of IDEs used for each part of the system:

• General REST API → IntelliJ;

• Smart Contract → GoLand;

- Mobile App → Android Studio;

- Web App → Visual Studio Code;

- Database interaction → DataGrip;

Besides the JetBrains IDEs, Visual Studio Code was the choice for the development of the web

application because it provides the best environment to work with JavaScript even compare with

the JetBrains solution, WebStorm.

3.3.3 Description and presentation

In this Subsection, the final version of the system will be presented, this presentation will be

separated into three smaller sections in order to provide a more organized presentation. On the

Section 3.3.3.1 some of the more complex parts of the general REST API and the Smart Contract

will be shown in detail recurring to code, along with the Open API implementation and the off-

chain database. The Section 3.3.3.2 will show the final versions of the user interfaces implemented

on the web application and on the mobile application, some code used on the more complex part of

these applications will also be shown and finally, the modifications made on the applications made

by the students of IPVC will be shown/stated. The Section 3.3.3.3 will mainly show the docker

and docker-compose configurations alongside the AWS S3 and some more information about the

VMs used to deploy the Backend.

All the code used for this project can be found on the GitHub repositories presented on Ap-

pendix B.

3.3.3.1 Backend

Regarding the general REST API, the tools and architecture followed were already described on

the Section 3.3.2, this API follows the Spring Boot architecture (based on MVC) that aims to

separate the business layer (Services), the database access layer (Models & Repositories) and

the controllers (Controllers). All the Security was built using Spring Security that allows the

implementation of Authorization and Authentication, described on the Section 2.1.2.1. With this

Process traceability in the shipbuilding industry 40

only authenticated users can access the endpoints of this application (unless it is a public endpoint

like swagger and login endpoints) after they log in and get their token or refresh token. The CORS

configuration was also set, which means only authorized hosts can use this API.

The authentication is based on roles, specially three roles: EMPLOYEE, CLIENT and AD-

MIN; these roles are based on the use cases specified before, and each role can some endpoints.

With the CLIENT role, a user can simply see the information and parts of the ship alongside its

documents and traceability of each one; With the EMPLOYEE role, a user can do everything a

CLIENT does but also create ProductLots and Activities; An ADMIN can do everything that the

other roles can, and he can also manage other users and their roles (CRUD). This kind of definition

of roles can be simply done by using the @PreAuthorized annotation of Spring:

@PreAuthorize("hasAnyRole(’ROLE_ADMIN’, ’ROLE_EMPLOYEE’)")

or

@PreAuthorize("hasRole(’ROLE_ADMIN’)")

Two complex cases of implementation on this part of the system were the check of the finger-

print and the download of the file, these two cases are directly connected because the check for the

document fingerprint happens every time a file is reached out for download. Firstly, the download

endpoint receives the ID of the ProductLot that has the associated the target file and the key iden-

tifier of that file, after that, the corresponding ProductLot is fetched, the DocumentKey entity too

and the constant path for that document in the S3 Bucket is built in order to fetch the file. With

all this information, the file is fetched from the S3 Bucket as an InputStream and immediately

converted to a byte array:

public byte[] download(String path,

String documentKey,

String documentFingerPrint) {

try {

var object = s3.getObject(path, documentKey);

var inputStream = object.getObjectContent();

byte[] bytes = IOUtils.toByteArray(inputStream);

inputStream.close();

checkFileReliability(documentFingerPrint, bytes);

return bytes;

} catch (IOException e) {

log.error("Failed to store file in S3, e: {}",

e.getMessage());

throw new IllegalStateException(

"Failed to download file in S3", e);

}

3.3 Implementation 41

}

With this byte array we can calculate the SHA-256 digest (fingerprint) and compare it to the

one stored on the blockchain (DocumentKey fetched earlier), if they are not the same an error is

thrown and the operation stopped:

private void checkFileReliability(String documentFingerPrint,

byte[] bytes)

throws IOException {

InputStream inputStream = new ByteArrayInputStream(bytes);

String checksumSHA256 = DigestUtils.sha256Hex(inputStream);

if (!checksumSHA256.equals(documentFingerPrint)) {

throw new IllegalStateException(

"The finger prints don’t match, so the file was modified");

}

inputStream.close();

}

If they are the same, the byte array is returned with some metadata:

@Override

@GetMapping("/product/{productLotUuid}/document/{documentKey}/download")

@PreAuthorize("hasAnyRole(’ROLE_EMPLOYEE’, ’ROLE_CLIENT’, ’ROLE_ADMIN’)")

public ResponseEntity<ByteArrayResource> getDocument(

@PathVariable String productLotUuid,

@PathVariable String documentKey) {

var data = smartContractService.getDocument(productLotUuid, documentKey);

var filename = "file.pdf"; //only pdf for now

return ResponseEntity

.ok()

.contentLength(data.length)

.header("Content-type", "application/octet-stream")

.header("Content-disposition", "attachment; filename=\"" +

filename + "\"")

.body(new ByteArrayResource(data));

}

The communication with the Smart Contract API is made thought and a client called Open

Feign that allows the creation of an interface for each API we wish to consume and define the

various endpoints of that API as methods that can receive parameters, those can be the body, the

headers, the path variables or anything that needs to be included in the request:

Process traceability in the shipbuilding industry 42

@FeignClient(value = "smartContractTraceabilityApi",

url = "${app.blockchain.api.invoke-url}")

public interface SmartContractTraceabilityApiClient {

@PostMapping(value = "/", consumes = APPLICATION_JSON_VALUE)

Map<String, String> createActivity(

@RequestHeader("Authorization") String bearerToken,

String jsonRequest);

}

The Swagger (Open API) implementation allows the easy documentation of the endpoints

that were implemented, by just specifying in code the operation that each endpoint performs, the

possibilities of response and some examples for the body, a very clean and good documentation

with a REST client is generated which also allows the easy testing of each endpoint, it even allows

the authentication with bearer token, some example print screens can be found at Appendix C.1.

The Smart Contract defines the on-chain entities shown on the data model of Fig. 3.3, the

definition of those entities can be found on Fig. C.5 of the Appendix C.2 and all the operations

were already defined on the Table 3.1 on the Section 3.3.1.1. The most complex operation was the

“GetTraceabilityByReferenceNum“, this operation receives the reference number of a ProductLot

and returns its traceability in the format exemplified on the Appendix A.2, the first step is to use the

operation “ReadProductLotByReferenceNum“ to check if the ProductLot exists and if it does, to

get it. After that, a new function is called to build the traceability, this function will start by fetching

all the activities and get the one that has the OutputProductLot equals to the one found previously,

that is the activity that gave origin to the product that was requested to be traced, after this, this

method will be called recursively in order to get the origin on the inputs and quantities used to

build the product to be traces, find the complete implementation on Fig. C.6 of the Appendix C.2.

This recursive call can be a problem if the ProductLot that is being trace has is very deep into the

supply chain, but this will be approached in Section 4.

3.3.3.2 Frontend

In order to showcase all the implemmented funcionalities throught the web page and the mobile

application, we can imagine a use case where three different users exist and are using the applica-

tions:

- The Administrator with the username “admin“ will use the web application to:

- Create designations for parts of the ship (products);

- Create designations for activities;

- Create users (and assign roles);

- The Employee 21 with the username “func21“ will use the mobile application to:

3.3 Implementation 43

- Scan components;

- Create components;

- Associate a component with other components;

- Associate documents with a component;

- And see all components

- The Client Pedro Araujo with the username “user“ will use the web application to:

- See all parts of the ship (products) and each respective traceability;

- See the documents associated with each part of the ship;

It is also important to refer that, like it was stated before, the Admin can do all the actions and

the Employee can also see users, products and its traceabilities but in order to avoid repetition, the

functionalities were splitted between the three users. Besides this, on Chapter 4, some tests are

performed based on the supply chain created in this showcase.

Starting by the mobile application, a user will start by logging in, only an existing user with

the “EMPLOYEE“ role can login, otherwise error messages will be shown, the user can also

hide/show his password (Figure 3.5).

Figure 3.5: Mobile login screen

Right after the login, the user will be redirected to the home screen where he can Scan com-

ponents by QR Code or RFID (Figure 3.6), this scans are simply examples of what the goal is,

they were not fully implemmented because for this use case, we do not possess a real server that

can provide this real information. So if the RFID button is clicked, nothing happens but if the QR

Code button is clicked, there is the possibility for scanning a code, once the scan is a success, a

Process traceability in the shipbuilding industry 44

toast is shown and the user is redirected to the “Add Component“ screen in order to simulate the

scan, if it was a real one, the information would be auto filled.

Figure 3.6: Mobile scan screens

Following the bottom navigation bar, there is the “List“ page that shows to the user all the

existing products, for each it is shown the the product designation, the reference number right

bellow, the product type on the right and a button right bellow that button that shows more infor-

mation about the product (Figure 3.7). To warn that some of this printscreens will contain trash

data, whish is essecially data radomly and automatically added to the application in order to fill it.

Still on this screen, there is the possiblity of search by reference number, designation and

product type, by writting something on the input field, the list will be automaticcly filtered down.

3.3 Implementation 45

Figure 3.7: Mobile list and search screen

When a user clicks on the component, the information is presented with more detail, including

the available amount of that component that can be used and the input components that gave origin

to that particular component, if any (Figure 3.8).

Figure 3.8: Mobile list info screen

The “Add component“ screen is used to create components by filling the input fields with

a unique reference number, a designation, a product type, and an initial amount, there is also a

checkbox to choose if that component has a serial number or not, if it has, the initial and total

Process traceability in the shipbuilding industry 46

amounts will always be 1 because the component itself is unique, if not that component will repre-

sent a lot of equal components. A simple component without any input components or documents

can be created just like this (Figure 3.9).

Figure 3.9: Mobile simple component creation (Iron plate example)

Besides providing this information, there is also the possiblity to associate documents to the

component, that can be later visualised on the web application, for that the user need to click on

“Insert documents“ and choose some from his storage (Figure 3.10).

3.3 Implementation 47

Figure 3.10: Mobile component creation with documents (Steel plate example)

There is also the possibility to associate input components to the new component, that means

the new component was built using those input componets, for that, after the input fields are field

and the documents are associated, the user must click on “Add to existing components“. On that

new page, the reference number of the input component must be used, for that, there is a dropdown

with the designations of each component is order to ease the choices and a quantity used of that

component to build this new one (Figure 3.11). All the choosed components will be added to a

list, and when everything is ready, the user can click "Finish", that action will show a popup where

the name of the activity that originated the new component needs to be choosen, this name comes

from the “Activity Designations“ created by the admin on the web application. After all this, the

new component can be created with all this associations (Figure 3.12).

Process traceability in the shipbuilding industry 48

Figure 3.11: Mobile component creation with input components (Anchor example)

Figure 3.12: Mobile component creation input components association (Anchor example)

In many screens there is the interrogation mark sign “¿‘ that can be clicked and it will show a

popup with information about the screen that is currently open (Figure 3.13).

3.3 Implementation 49

Figure 3.13: Mobile help popup on the “Add component“ screen

On the web application, a user also starts by logging in and depending on the type of role

that the logge in user has, some parts of the platform will be hidded, some printscreens can be

found on Apendix C.6 with the different views of each user. A client will only have acccess to

the page where he can see the components and their information. An employee will be able to

see the components, its information, all the designations and the users but he won’t be able to

create/update/delete any of them. While an admin has access to everything. Once more, there are

verifications in order to make sure the user exists (Figure 3.15) and adds all the needed information

(Figure 3.14).

Process traceability in the shipbuilding industry 50

Figure 3.14: Web login with basic validation

Figure 3.15: Web login with user validation

Firstly, lets see the option that both Admin and Employee can see but only the Admin can cre-

ate/update/delete. Following the navigation bar above, we can see the “Designações de Produtos“

and “Designações de Atividades“ those options will respectivly redirect to the products designa-

tion page and activities designation page, both allow to do the same thing in the exact same way,

so for this example lets see only the activities designation page. A list is shown with all the activity

designations, this is the exact same list that appears on the mobile application uppon the addition

on input components to a new component. Here there the possibility to add an activity designation

by clicking on the top right corner button with the plus icon “+“, this will show a popup with

an input field, by filling this and clicking on Add (Figure 3.16), the designation will be created

(Figure 3.17).

3.3 Implementation 51

Figure 3.16: Activity Designation creation popup

Figure 3.17: Activity Designation list after creation

There is also the possibility of updating an existing activity designation by clicking on the pen-

cil icon on the right side of the target activity designation. And just like the creation, there will be

a popup with an input field, after adding the new designations and clicking on Add (Figure 3.18),

the activity designation will be updated (Figure 3.19).

Process traceability in the shipbuilding industry 52

Figure 3.18: Activity Designation update popup

Figure 3.19: Activity Designation list after update

The final action on this page is to delete an activity designation by clicking on the trash can

icon on the right side of the target activity designation. An alert will appear in order to confirm

this decision (Figure 3.20), after accepting, the designation will be deleted (Figure 3.21).

Figure 3.20: Activity Designation delete alert

3.3 Implementation 53

Figure 3.21: Activity Designation list after delete

On the navigation bar above there is the page “Utilizadores“, that option redirects the user to

the users page, where a list is shown with all users on the system. Here there is the possibility

to add an user by clicking on the top right corner button with the plus icon “+“, this will show a

popup requesting some information about the user and role that user should have, by filling this

and clicking on Add (Figure 3.22), the user will be created (Figure 3.23).

Figure 3.22: Users create popup

Figure 3.23: Users list after create

There is also the possibility of updating an existing user by clicking on the pencil icon on the

right side of the target user. And just like the creation, there will be a popup that will allow the

Process traceability in the shipbuilding industry 54

change of name and role, after filling this and clicking on “Editar“ (Figure 3.24), the user will be

updated (Figure 3.25).

Figure 3.24: Users update popup

Figure 3.25: Users list after update

In order to show a different view of user, lets use the client “user“ for the next section. A

client can only see the page “Produtos“ that shows all products of the system on a table with

their designation, type, initial and avalable quatity and also two options for each, one to see the

associated documents and another to see the associatiated components (Figure 3.26).

3.3 Implementation 55

Figure 3.26: List of products (components)

By clicking on the first button on the right side of a product, the list of associated documents

will be shown, lets click on the component created before the “Steel plate“ and see the two docu-

ments that were associated earlier (Figures 3.27 and 3.28).

Figure 3.27: Products (components) documents - 1

Process traceability in the shipbuilding industry 56

Figure 3.28: Products (components) documents - 2

By clicking on the second button on the right side of a product, the traceability of that compo-

nent will be shown in the form a graph, lets click on the component created before the “Anchor“

and see its traceability (Figure 3.29). In this page there is the possibility of hovering the mouse

on a component and see the quantity of that product that were used. A user can also click on

a component to its traceability. By analysing the graph, we can see the input documents of the

product selected and the input documents of each of those products, getting the full traceability.

Figure 3.29: Products (components) traceability representation with a graph

Regarding the implemmentation of the web and mobile applications, no major chalanges were

faced since the basic implemmentation was already done but there was a lot of refactoring on both

applications.

As it was stated before, the bases for the mobile and web applications were made by students

but there was a lot of refactor involving both applications.

3.3 Implementation 57

On the mobile application, in terms of UI, it looked good so there were no changes needed

but in terms of functionalities, there were some very important ones that had to be added and

others that had to be removed. There was a functionality to list pending products that basicly

stored locally the products that were added and they could only be submitted in a different screen

in order to make sure there was no wrong data, that is a good way of handeling the process of

product creation but for this scope it is just to much complexity and it could be added later if

needed by the business. It was not possible to associate more then one input component to a new

component before, so that functionality also had to be added also side the functionalitty to see the

input components of a component when opening the “More info“ screen. Before it wasn’t possible

to create a component without an activity (without inputs), that was also a new functionalitty that

was added. And finally, regarding the documents, it was not possible to associate documents

to a component, this functionalitty was addded too, there was the possibility of checking the

documents associated with each component but it was removed, that should be done only on the

web application. So, on this application a lot of functionalitties were missing and some were not

suppose to exist but all of that was included on the refactoring.

On the web application, there was also lots of changes but in this case they were mostly about

the design and user experience, the UI was not good and the application was very confusing and

hard to navigate. It terms of functionalities, the only one missing was a page to view the documents

associated each component, that was added. There were also a few things to fixed regarding the

authorization on the page for each type of user. Besides that, the application design was completly

rethought and implemmented, a few print screens can be found on Appendix C.7 that ilustrate how

the application was before.

3.3.3.3 Infrastructure

In order to create an easy way to run the general REST API in any machine and consequently

easily deploy it in any VM, docker was used. A Dockerfile was created to simply run the compiled

JAR file, which is the result of the project compilation:

FROM openjdk:17

COPY target/westsea-traceability-0.0.1-SNAPSHOT.jar app.jar

EXPOSE 8080

ENTRYPOINT ["java","-jar","/app.jar"]

That Dockerfile will be used on the docker-compose file, that file defines three services that are

needed for the general REST API, there is the MongoDB database, which runs with all the default

configurations; the actual API that is provided by the Dockerfile, which will run on the port 8080;

and the mongo-express service that runs on the port 8081, this service is a user interface used

to easily interact with a MongoDB instance, the main purpose of this service is to ease the life

of the IPVC students, so they can delete and insert any data for their tests, usually a service like

this is not required, a few print screens of this interface can be found on the Section C.3 of the

Process traceability in the shipbuilding industry 58

Appendix C. The docker-compose file used for the system looks like this but with other credentials

for the correct environment:

version: "3.3"

services:

mongodb:

hostname: mongodb

image: mongo

ports:

- 27017:27017

volumes:

- data:/data

environment:

- MONGO_INITDB_ROOT_USERNAME=rootuser

- MONGO_INITDB_ROOT_PASSWORD=rootpass

westsea-traceability:

build: .

restart: always

ports:

- 8080:8080

depends_on:

- mongodb

mongo-express:

image: mongo-express

restart: always

ports:

- 8081:8081

environment:

- ME_CONFIG_MONGODB_ADMINUSERNAME=rootuser

- ME_CONFIG_MONGODB_ADMINPASSWORD=rootpass

- ME_CONFIG_MONGODB_SERVER=mongodb

volumes:

data: { }

Besides the VMs, this API also runs on Local environment, and there are some different con-

figurations for that environment and for the VMs, for example, the URL where the Smart Contract

API runs is different, on local should be “localhost:SOMEPORT“ but on a VM should be a fixed

IP; the bucket name for the S3 connection should be different on every environment because we

don’t want the files from Local to be mixed with the files from the VMs; and also the MongoDB

connection can be different, on the VMs it will be used the service from the docker-compose file

but on Local maybe we want to use our local instance. On Spring, there is a main configuration

3.3 Implementation 59

file called “application.properties“, this file usually contains all the configurations for the appli-

cation to work the way we want to, but in this case, this file will be used to define some generic

configurations and to define the profile of the application, depending on the profile in use, an-

other “.properties“ file will be used along with this one. The profiles map to each environment

that exists, for this case there is the Local environment and the VM environment, so the ‘applica-

tion.properties‘ file looks like this:

server.port=8080

jwt.secret=secret

spring.servlet.multipart.max-file-size=100MB

spring.profiles.active=local

And it defines the local as the active profile so the “application-local.properties“ will be also

used, this one looks like this (with the correct keys and credentials):

spring.data.mongodb.authentication-database=admin

spring.data.mongodb.database=wstrace

spring.data.mongodb.host=localhost

spring.data.mongodb.port=27017

spring.data.mongodb.auto-index-creation=true

spring.mvc.pathmatch.matching-strategy=ant_path_matcher

app.http.security.enabled=false

app.http.security.cors=http://localhost:4200

app.http.security.headers=*

app.http.security.methods=GET,POST,PUT,DELETE,OPTIONS,HEAD

app.http.security.exposedHeaders=Page-Content

app.blockchain.network-admin.user=admin

app.blockchain.network-admin.password=adminpw

app.blockchain.api.base-url=http://localhost:8801

app.blockchain.api.channel=my-channel1

app.blockchain.api.chaincode=trace-westsea

app.blockchain.api.invoke-url=${app.blockchain.api.base-url}\

/invoke\

/${app.blockchain.api.channel}\

/${app.blockchain.api.chaincode}

app.aws.s3.bucketName=westsea-trace-docs-bucket-local

app.aws.s3.accessKey=AKIARZIVDAGRWC7BOPML

app.aws.s3.secretKey=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

And if the defined profile was VM, the “application-vm.properties“ would be used, and that

file looks like this (with the correct keys and credentials):

spring.data.mongodb.authentication-database=admin

Process traceability in the shipbuilding industry 60

spring.data.mongodb.username=rootuser

spring.data.mongodb.password=rootpass

spring.data.mongodb.database=wstrace

spring.data.mongodb.host=mongodb

spring.data.mongodb.port=27017

spring.data.mongodb.auto-index-creation=true

spring.mvc.pathmatch.matching-strategy=ant_path_matcher

app.http.security.enabled=false

app.http.security.cors=http://localhost:4200

app.http.security.headers=*

app.http.security.methods=GET,POST,PUT,DELETE,OPTIONS,HEAD

app.http.security.exposedHeaders=Page-Content

app.blockchain.network-admin.user=admin

app.blockchain.network-admin.password=adminpw

app.blockchain.api.base-url=http://34.142.64.171:8801

app.blockchain.api.channel=my-channel1

app.blockchain.api.chaincode=trace-westsea

app.blockchain.api.invoke-url=${app.blockchain.api.base-url}\

/invoke\

/${app.blockchain.api.channel}\

/${app.blockchain.api.chaincode}

app.aws.s3.bucketName=westsea-trace-docs-bucket-dev

app.aws.s3.accessKey=AKIARZIVDAGRWC7BOPML

app.aws.s3.secretKey=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

Regarding the VMs, the AWS EC2 and Google’s Compute Engine interfaces won’t be shown

because they contain too much sensitive information about the IPs and several other configurations,

but we can assume that the only extra configurations that were made were to expose the required

ports to the public, add HTTPS and firewall.

The AWS S3 did not need any special configuration on the Cloud, the access and secret keys

were extracted from there into the code and everything was configured from there. A few print

screens of the AWS S3 can be found on the Section C.4 of the Appendix C

Chapter 4

Experimental Validation

In this chapter, it is presented the validation of the system, a few points will be discussed, namely:

if this system satisfies the requirements of a traceability system; problems that need to be fixed;

and some performance tests on the backend (API). It is also important to mention that this system

does not have an evaluation because it could not be tested on a real professional environment as

it would have been too costly, but there are unit tests for the most important methods used o n

the General API, those being the methods to interact with the Smart Contract API and the method

to download a document that also certifies if the document was adulterated, or it is legit. Those

unit tests are presented on Appendix C.10. This chapter is separated into three sections, the first

section will elaborate about how to validate a traceability system and how this system fits; the

second section will state some problems already identified that need to be fixed; and the final

section will show some tests that evaluate the overall performance of the systems’ backend.

4.1 Traceability System validation

Validating a traceability system is an important step in ensuring that it is effective and meets the

requirements of the industry and product being traced, after a lot of research and analysis it is

possible to compile the most important requirements to consider on a traceability system:

1. Unique identification: Each product or material must have a unique identifier that can be

used to track its movement through the supply chain. Depending on the business, it could

be a serial number, barcode, RFID tag, or any other type of identification.

2. Data capture: The traceability system must be able to capture data at various points in the

supply chain, including at the point of origin, during transportation, and at the point of sale.

This data should include any relevant information about the product that is being traced.

3. Data storage and management: The data captured by the traceability system must be stored

and managed in a way that allows it to be easily accessed and analyzed. This usually means

that some kind of database or data management system is required.

61

Experimental Validation 62

4. Integration with other systems: The traceability system may need to integrate with other

systems of the company, such as inventory management or logistics systems, in order to

provide a complete picture of the movement of products or materials through the supply

chain.

5. Security: The traceability system must be secure to prevent unauthorized access to sensitive

data. This may require the use of encryption, authentication, or other security measures.

6. Compliance: Depending on the industry and product being traced, there may be regulatory

requirements for traceability systems. The system must be designed to meet these require-

ments.

7. Transparency: The traceability system should provide transparency to all stakeholders in-

volved in the supply chain, including consumers, regulators, and other interested parties.

This can help build trust and ensure that products are safe and of high quality.

By analyzing all those points, it is possible to map them into the system developed:

1. Unique identification: This depends on the company, in this case study we know that The

West Sea [20] has an unique identifier in each component of the ship and on the lot itself

and the system built supports those identifiers and reference numbers by storing them and

the scan of codes is also partially implemented on the mobile application.

2. Data capture: With this system, it is possible to capture the several components in their

several states by simply using the mobile application to scan the code or manually insert the

information and documents.

3. Data storage and management: The traced data is stored on a blockchain, and it is also

provided a very simple way to access that information through an authenticated API. To

ease even more this process there is the web application that presents all that information in

a simple organized way.

4. Integration with other systems: This point also depends on the business, this system is not

integration with any of The West Sea [20] systems, but it can be done quite easily.

5. Security: All the applications and APIs are secured thought authentication and the data is

fully safe by being stored on the blockchain, as it was stated several times before, it provides

extreme safety for the data that is stored there, some more information can be found on

Section 2.1.3.1.

6. Compliance: This point is not fully adopted on this system mainly because there is no real

data being used, and we had no knowledge to the regulatory requirements, but it can be

implemented upon the need.

7. Transparency: Through the web application, all the information is available to the concerned

stakeholders.

4.2 Identified problems 63

Taking all this into consideration, we can say that the system developed follows almost all the

requirements of a traceability system and what is nor achieve is mainly due to the fact that we are

not handling real data on a professional environment, if that was the case, we could easily ensure

that all the requirements were followed.

4.2 Identified problems

The main problem in this system is the usage of recursion on the Smart Contract in order to gather

the information required to form the traceability object, recursion is explained on Section 2.1.2.3

and their usage on the Smart Contract is explained on Section 3.3.3.1 and the complete imple-

mentation is shown on Fig. C.6 of the Appendix C.2. In this case, recursion can introduce some

critical issues if it’s too deep like stack overflow, that means if the recursion is too deep, that stack

will be called too many times in order to keep track of function calls, and it usually results in an

error; recursion will use a lot of memory each function call adds a new stack frame to the call

stack, resulting in memory usage issues and maybe memory leaks; the performance is also greatly

affected because of the overhead in managing function calls, resulting in a lengthy operation. All

this is bad as it will slow down the operation of calculating and retrieving the traceability of a

product, and it also makes it unstable and unreliable if the recursion depth is too long.

Some tests have been executed on the endpoint that calls the traceability method from the

API to the Smart Contract in order to fully determine how viable this recursive method is. If we

take into consideration a depth of n, n being the number of times the function calls itself, we can

see that for n = 1 the call takes 3.67 seconds (Appendix C.8.1), for n = 5 it takes 4.08 seconds

(Appendix C.8.2) and for n = 15 it takes 4.27 seconds (Appendix C.8.3), with this information we

can conclude that the recursive function has exponential complexity. The difference in execution

time between a depth of 15 and a depth of 5 is significant. Depth 15 is three times greater than

depth 5, but the execution time is more than one and a half times higher. This suggests that the

execution time of the function is increasing exponentially as the depth of recursion increases.

Furthermore, the absolute difference in execution time between depths 15 and 5 is quite large,

which suggests that the function may not be very efficient for higher depths. If the depth of

recursion needs to be increased further, it is possible that the function may become unfeasible to

execute in a reasonable time.

Nevertheless, this problem can be addressed and there are a number of ways to solve it to

make this operation reliable and fast, the best for this case is to not use it at all and replace it by

an interactive approach, there are many solutions that fit this problem, two of them would be: to

use a stack, this is a data structure that will manage the state of the operation avoiding the usage

of the call stack and consequently avoiding the stack overflow error; or to use memoization, this is

consists on storing the results on cache or locally (it can involve a local database) in order to reuse

them. Both approaches are interesting but in this case, to solve the recursion problem, we could

simply remove it and apply the stack data structure.

Experimental Validation 64

Recursion is a powerful tool to solve certain problems, but in this context it is a trap because

it will always make the operation unreliable, as there it is not possible to know how deep the

recursion will be, we can estimate that a recursion around 15 of depth would already trigger a

stack overflow error or make the operation extremely slow to the point that is not usable.

4.3 Performance Tests

In order to test the overall performance of this system, some load tests, these types of tests are

used to determine how well a system or application can perform under heavy user traffic or high

volume usage by simulating numerous concurrent users or transactions to measure the system’s

ability to handle the increased load without degrading its performance or causing it to crash. Per-

formance was not a goal of this system, so it is not expected to perform very well, in a professional

environment, this would be an important goal/mark it is definitely something that can and should

be improved in this system.

In order to test the complete backend including interactions with the database, the Smart Con-

tract and the blockchain, the load tests will run against the main general API using a tool called

Apache JMeter [13] and it takes into consideration the use case explained in Section 3.3.3.2.

By looking at the print screens on the Appendix C.9, we can conclude that the performance is

not good at all, the concurrency is not optimal at all as it fails if at least ten users are calling the

same endpoint or if the same endpoint is called ten times in the same timestamp. But it is also pos-

sible to conclude that this performance issues are a result of the communication between the API

and the Blockchain, in a production ready environment, the Blockchain would be optimized with

a lot more resources, so we can expect that the performance would be much higher. Nonetheless,

this is a problem that should be targeted quickly if this was to deploy and use.

Chapter 5

Conclusions and Future Work

5.1 Pros, Cons, and Pain points to make the change for a system like
this

5.1.1 Is it worth the change?

Implementing a traceability system based on the blockchain technology has the potential to bring

numerous benefits to companies. These benefits include enhanced transparency, improved trace-

ability, increased efficiency, reduced fraud and errors, and better customer satisfaction. How-

ever, implementing a blockchain-based traceability system can also be complex, costly, and time-

consuming. Companies must conduct a thorough analysis of the potential benefits and risks to

determine whether a blockchain-based traceability system is appropriate for their supply chain,

and that is the only way to know if this type of system is worth it or not for a particular company.

5.1.2 Pros

Implementing a traceability system based on the blockchain technology has several advantages.

The benefits of a blockchain-based traceability system include enhanced transparency, improved

traceability, increased efficiency, reduced fraud and errors, and better customer satisfaction, these

advantages are achieved by creating an immutable and transparent record of transactions. Each

transaction on the blockchain is verified and recorded by multiple nodes, and once added to the

blockchain, it cannot be altered or deleted. This makes the system highly secure and trustworthy,

as it eliminates the possibility of fraud or errors caused by human manipulation or error. Addi-

tionally, the transparent nature of the blockchain allows for greater accountability and visibility

throughout the supply chain, enabling companies to quickly identify and address any issues or

discrepancies These advantages can help companies to achieve greater supply chain visibility,

streamline processes, and enhance customer trust and loyalty.

65

Conclusions and Future Work 66

5.1.3 Cons

While implementing a traceability system based on the blockchain technology can bring signifi-

cant benefits to companies, there are also some challenges that need to be considered. The disad-

vantages of a blockchain-based traceability system include high complexity, cost, interoperability,

scalability, and security risks. So, besides the many benefits a system like this can provide, one of

the main risks is the potential for a 51% attack, where a single entity gains control of the majority

of the nodes on the blockchain network and can manipulate the data. Another risk is the use of

smart contracts, they can have bugs or vulnerabilities that hackers could exploit to steal funds or

data. Additionally, the use of public keys and wallets for transactions could potentially lead to

identity theft or fraud if these are not properly secured. Finally, the use of private blockchains

could create centralized control, making the system more vulnerable to attacks or manipulation

by a single entity, also confronting the decentralized way that should be followed. It’s essen-

tial to consider these risks and take appropriate measures to mitigate them when implementing

a blockchain-based traceability system. These challenges can make it difficult for companies to

implement a blockchain-based traceability system, requiring them to invest in technology infras-

tructure, train employees, and update existing systems.

5.1.4 Pain Points

Implementing a traceability system based on the blockchain technology can be a complex and

costly process, requiring technical expertise, data integration, standardization, legal compliance,

and change management. These pain points can make it challenging for companies to implement

a blockchain-based traceability system successfully. Companies must assess these pain points and

develop a comprehensive plan to address them to ensure the success of their implementation, those

would be:

• Technical expertise - it requires a high level of technical expertise, including knowledge of

distributed ledger technology, smart contracts, and other relevant technologies. Companies

may have to hire external experts or train existing staff to develop the necessary technical

capabilities.

• Data integration - The implementation of a system like this requires the integration of data

from different sources and systems in the supply chain. This can be a challenging task, as

the data must be standardized and reconciled to ensure its accuracy and consistency.

• Cost - it can be expensive, and the cost of investment in technology infrastructure, training

employees, and updating existing systems can be significant. Companies must conduct a

thorough cost-benefit analysis to determine if the investment is justified.

5.2 Achievements 67

• Standardization - blockchain technology is still in its early stages, and there is a lack of

standardization in the industry. This can lead to interoperability issues with other stake-

holders in the supply chain, making it difficult to achieve a seamless and integrated supply

chain.

• Legal and regulatory compliance - it may require compliance with legal and regulatory

requirements related to data privacy, security, and transparency. Companies must ensure

that their implementation is compliant with all relevant regulations and standards.

• Resistance to change - it can be a significant change for employees and stakeholders in the

supply chain, and resistance to change can be a significant challenge specially if a company

chooses to adopt a document management system like the one implemented in this case

study, where documents are stored on the cloud and associated through a reference on the

blockchain. Companies must ensure that they have a robust change management plan in

place to address this challenge.

In summary, implementing a blockchain-based traceability system can be a complex and chal-

lenging process, requiring careful consideration of the potential benefits and risks, as well as

careful planning and execution. However, if implemented successfully, a blockchain-based trace-

ability system can bring significant benefits to companies, including enhanced transparency, im-

proved traceability, increased efficiency, reduced fraud and errors, and better customer satisfaction.

To mitigate the pain points associated with implementing a blockchain-based traceability system,

companies must develop a comprehensive plan that addresses the technical expertise required,

data integration, cost, standardization, legal and regulatory compliance, and change management.

With careful planning and execution, companies can successfully implement a blockchain-based

traceability system and reap the benefits of enhanced supply chain transparency and efficiency.

5.2 Achievements

Following the goals defined in the Section 1.3, we can say that almost all goals were successfully

achieved except for the Experimental Validation, this goal was focused on testing the system with

real data from the company, that was not possible due to confidentiality patterns/rules and to get

their evaluation about the system that was also not possible due to time incompatibility of the

Author. Instead, some other tests were performed, all that developed on the Chapter 4.

Besides this, a scientific paper was published with the title IoT and Blockchain Technologies

for Process Traceability in the Shipbuilding Industry on the Conference Iberian Conference on

Information Systems and Technologies (CISTI) – 2022 [3].

5.3 Future Work

Regarding some future development, there are already problems that were identified with possible

solutions to them described in Section 4.2, these problems should be addressed by implementing

Conclusions and Future Work 68

one of the proposed solutions. By analyzing the Section 4.3, we can also say that the performance

of the system should be improved on the communications between the general REST API and the

Smart Contract API, this could easily be fixed by making the Smart Contract production ready and

deploy it on a proper place.

The web and mobile applications can be improved or rethought upon the need but in a gen-

eral way, these applications can make the essential processes/calls to the system in an easy and

interactive way.

The final point to improve is the validation, this system should be tested with real data and real

people to ensure the reliability.

References

[1] Akanksha and Akshay Chaturvedi. Comparison of different authentication techniques and
steps to implement robust jwt authentication. In 2022 7th International Conference on Com-
munication and Electronics Systems (ICCES), pages 772–779, 2022.

[2] Luís Alves, Estrela Ferreira Cruz, Sérgio I Lopes, Pedro M Faria, and António
Miguel Rosado da Cruz. Towards circular economy in the textiles and clothing value chain
through blockchain technology and iot: A review. Waste Management & Research, 40(1):3–
23, 2022. PMID: 34708680.

[3] Pedro Araújo, A. M. Rosado da Cruz, and Sérgio Ivan Lopes. Iot and blockchain technolo-
gies for process traceability in the shipbuilding industry. In 2022 17th Iberian Conference
on Information Systems and Technologies (CISTI), pages 1–6, 2022.

[4] Mohamed Awwad, Sohit Reddy, Varun Kazhana Airpulli, Madhubala Santosh Zambre,
Aniket Marathe, and Prasham Jain. Blockchain technology for efficient management of
supply chain. In Proceedings of the International Conference on Industrial Engineering and
Operations Management, pages 1–10, Washington DC, USA, September 27-29 2018.

[5] Paul Bailes and Leighton Brough. Making sense of recursion patterns. In 2012 First Inter-
national Workshop on Formal Methods in Software Engineering: Rigorous and Agile Ap-
proaches (FormSERA), pages 16–22, 2012.

[6] Prajakta Patil; Chiradeep BasuMallick. What is cloud computing? definition, benefits, types,
and trends, February 2022. [Online; last updated February 9, 2022].

[7] Michail J. Beliatis, Kasper Jensen, Lars Ellegaard, Annabeth Aagaard, and Mirko Presser.
Next generation industrial iot digitalization for traceability in metal manufacturing industry:
A case study of industry 4.0. Electronics, 10(5), 2021.

[8] Thomas Beyhl, Gregor Berg, and Holger Giese. Why innovation processes need to sup-
port traceability. In 2013 7th International Workshop on Traceability in Emerging Forms of
Software Engineering (TEFSE), pages 1–4, 2013.

[9] Soumya Chakraborty. Shipbuilding process : Finalising and launching
the ship. https://www.marineinsight.com/naval-architecture/
shipbuilding-process-finalising-the-ship/. Accessed: 2021-12-10.

[10] Heyder Coelho and Andre Araujo. Segurança na construção e reparos navais em estaleiro
da região metropolitana de Belém. Revista Mundi Engenharia, Tecnologia e Gestão (ISSN:
2525-4782), 5, 07 2020.

69

https://www.marineinsight.com/naval-architecture/shipbuilding-process-finalising-the-ship/
https://www.marineinsight.com/naval-architecture/shipbuilding-process-finalising-the-ship/

REFERENCES 70

[11] Sylvere Krima; Thomas Hedberg; Allison Barnard Feeney. Nist: Blockchain provides se-
curity, traceability for smart manufacturing, February 2019. [Online; released February 11,
2019, updated October 25, 2021].

[12] Hyperledger Foundation. Fablo. https://labs.hyperledger.org/labs/fablo.
html.

[13] The Apache Software Foundation. Apache jmeter. https://jmeter.apache.org/.

[14] Paula Fraga-Lamas, José Varela-Barbeito, and Tiago M. Fernández-Caramés. Next gener-
ation auto-identification and traceability technologies for industry 5.0: A methodology and
practical use case for the shipbuilding industry. IEEE Access, 9:140700–140730, 2021.

[15] Iván Froiz-Míguez, Paula Fraga-Lamas, José Varela-Barbeito, and Tiago M. Fernández-
Caramés. Lorawan and blockchain based safety and health monitoring system for industry
4.0 operators. Proceedings, 42(1), 2020.

[16] Ke Liu and Ke Xu. Oauth based authentication and authorization in open telco api. In
2012 International Conference on Computer Science and Electronics Engineering, volume 1,
pages 176–179, 2012.

[17] Ling Qian, Zhiguo Luo, Yujian Du, and Leitao Guo. Cloud computing: An overview. In
Martin Gilje Jaatun, Gansen Zhao, and Chunming Rong, editors, Cloud Computing, pages
626–631, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[18] Pratik Rupareliya. What are decentralized applications (dapps)? — explained with examples,
November 2018.

[19] Yahya Shahsavari, Kaiwen Zhang, and Chamseddine Talhi. Performance modeling and anal-
ysis of the bitcoin inventory protocol. 04 2019.

[20] West Sea Viana Shipyard. West sea viana shipyard. https://west-sea.pt/. Accessed:
2010-09-30.

[21] RxJS Team. Rxjs overview.

[22] Bureau Veritas. Requirements for survey of materials and equipment for the classification
of ships and offshore units. https://marine-offshore.bureauveritas.com/
nr266-requirements-survey-materials-and-equipment-classification-ships-and-offshore-units.
Accessed: 2010-09-30.

[23] Shuhai Wang, Jingjing Shi, Dong Jiang, and Zhaohui Qi. Research for traceability model of
material supply quality in construction project. In 2012 Fifth International Symposium on
Computational Intelligence and Design, volume 2, pages 398–401, Oct 2012.

[24] Wei Zhou, Li Li, Min Luo, and Wu Chou. Rest api design patterns for sdn northbound api. In
2014 28th International Conference on Advanced Information Networking and Applications
Workshops, pages 358–365, 2014.

https://labs.hyperledger.org/labs/fablo.html
https://labs.hyperledger.org/labs/fablo.html
https://jmeter.apache.org/
https://west-sea.pt/
https://marine-offshore.bureauveritas.com/nr266-requirements-survey-materials-and-equipment-classification-ships-and-offshore-units
https://marine-offshore.bureauveritas.com/nr266-requirements-survey-materials-and-equipment-classification-ships-and-offshore-units

Appendix A

JSON examples

In this appendix, it is stored some input/output examples in JSON format.

A.1 The “Activity“ property “inputProductLots“

{

" 8 d2098a2 −c9eb −4 f51 −b125 − f51f137588a3 " : 13 ,

" a3ce92a6 −8514 −4 d6f −824b−6 e95d0181e17 " : 1 ,

}

A.2 The return of the Smart Contract operation “GetTraceability-
ByReferenceNum“

{

" ID " : "71 b98a2f −ce99 −4176 −95 fc −0 ebdc5f51436 " ,

" r e f e r ence Numb er " : "1231564" ,

" i s S e r i a l N u m b e r " : f a l s e ,

" d e s i g n a t i o n " : " S t e e l P l a t e " ,

" p roduc tType " : " P a r t " ,

" i n i t i a l Q u a n t i t y " : 583 ,

" a v a i l a b l e Q u a n t i t y " : 175 ,

" u s e d Q u a n t i t y A s I n p u t " : n u l l ,

" documentKeys " : [

{

" documentKey " : " key132 " ,

" f i l e F i n g e r P r i n t " : "238168267 g 1 s 6 7 1 g s 1 f 2 t 3 g j 1 "

} ,

{

71

JSON examples 72

" documentKey " : " key615 " ,

" f i l e F i n g e r P r i n t " : "655 q8wf46q815w7d16q5w1 "

}

] ,

" a c t i v i t y " : {

" ID " : " e8e809cb −208b −4113− bc31 −b451011e2013 "

" d e s i g n a t i o n " : " Cut "

" u s e r I d " : "8877 c40e −4 e1f −49c1 −8c52 −937718320 f 9 f "

" d a t e " : "2022 −05 −01T19 : 0 7 : 5 1 . 2 1 6 9 4 6 "

" i n p u t P r o d u c t L o t s " : [

{

" ID " : " bf024971 −12d8 −4d2c −92 f7 −cd297b7b711c " ,

" r e f e r ence Numb er " : "569653" ,

" i s S e r i a l N u m b e r " : f a l s e ,

" d e s i g n a t i o n " : " S t e e l I n g o t " ,

" p roduc tType " : " P a r t " ,

" i n i t i a l Q u a n t i t y " : 7512 ,

" a v a i l a b l e Q u a n t i t y " : 5168 ,

" u s e d Q u a n t i t y A s I n p u t " : 2175 ,

" documentKeys " : [

{

" documentKey " : " key168 " ,

" f i l e F i n g e r P r i n t " : "6 w4re89wd816d4wa58 "

}

] ,

" a c t i v i t y " : n u l l

}

]

}

}

Appendix B

GitHub

In this appendix it can be found the GitHub repositories with all the code of this system.

B.1 General REST API

https://github.com/pedroei/westsea-traceability

B.2 Smart Contract

https://github.com/pedroei/westsea-trace-fabric

B.3 Web Application

https://github.com/pedroei/westsea-traceability-web

B.4 Mobile Application

https://github.com/pedroei/-westsea-traceability-mobile

73

https://github.com/pedroei/westsea-traceability
https://github.com/pedroei/westsea-trace-fabric
https://github.com/pedroei/westsea-traceability-web
https://github.com/pedroei/-westsea-traceability-mobile

Appendix C

Printscreens

In this appendix, some relevant print screens can be found to be used as examples

C.1 Swagger (Open API) implementation

Figures C.1, C.2, C.3 and C.4 show the swagger interface.

Figure C.1: Swagger UI

74

C.1 Swagger (Open API) implementation 75

Figure C.2: Swagger authentications with bearer token

Figure C.3: Swagger example request

Printscreens 76

Figure C.4: Swagger example response

C.2 Code examples

Figures C.5 and C.6 show code examples.

Figure C.5: Smart Contract Entities

C.2 Code examples 77

Figure C.6: Smart Contract function to build the traceability of a ProductLot

Printscreens 78

C.3 Mongo Express Service

Figures C.7, C.8 and C.9 show the Mongo Express interface.

Figure C.7: Mongo Express

Figure C.8: Collections on Mongo Express

C.4 AWS S3 79

Figure C.9: Documents on Mongo Express

C.4 AWS S3

Figures C.10, C.11, C.12 and C.13 show the interface of S3 on AWS.

Figure C.10: Buckets on S3

Printscreens 80

Figure C.11: Folders on S3

Figure C.12: Documents on S3

C.5 Blockchain Explorer 81

Figure C.13: Document Information on S3

C.5 Blockchain Explorer

Figures C.14, C.15 and C.16 show the Blockchain Explorer.

Figure C.14: Blockchain Explorer Dashboard

Printscreens 82

Figure C.15: Blockchain Explorer Chain codes

Figure C.16: Blockchain Explorer Transaction details

C.6 Web Application

Figures C.17, C.18 and C.19 show the different views for different users on the web application.

C.6 Web Application 83

Figure C.17: Client View

Figure C.18: Employee View

Printscreens 84

Figure C.19: Admin View

C.7 Web Application before refactoring

Figures C.20, C.21, C.22, C.23, C.24 and C.25 show the old views of the web application before

the refactoring.

Figure C.20: Old web login page

C.7 Web Application before refactoring 85

Figure C.21: Old web menu

Figure C.22: Old web activity designations page

Figure C.23: Old web users page

Printscreens 86

Figure C.24: Old web products page

Figure C.25: Old web traceability page

C.8 Performance Tests with JMeter

Figures from Sections C.8.1, C.8.2 and C.8.3 show the tests on the recursive call with different

depths.

C.8 Performance Tests with JMeter 87

C.8.1 Tests on the recursive function with depth n = 1

Figure C.26: Tests with depth n = 1

Printscreens 88

C.8.2 Tests on the recursive function with depth n = 5

Figure C.27: Tests with depth n = 5

C.9 Performance Tests with JMeter 89

C.8.3 Tests on the recursive function with depth n = 15

Figure C.28: Tests with depth n = 15

C.9 Performance Tests with JMeter

Figures from the Sections C.9.1, C.9.2 and C.9.3 show the JMeter tests.

Printscreens 90

C.9.1 Tests on operation “GET ProductLots“

Figure C.29: Setup for the operation “GET ProductLots“

Figure C.30: Request used on the operation “GET ProductLots“

C.9 Performance Tests with JMeter 91

Figure C.31: Results of the operation “GET ProductLots“

C.9.2 Tests on operation “CREATE ProductLot“

Figure C.32: Setup of the operation “CREATE ProductLot“

Printscreens 92

Figure C.33: Request used on the operation “CREATE ProductLot“

Figure C.34: Results of the operation “CREATE ProductLot“

C.9 Performance Tests with JMeter 93

C.9.3 Tests on operation “CREATE Activity“

Figure C.35: Setup of the operation “CREATE Activity“

Figure C.36: Request used on the operation “CREATE Activity“

Printscreens 94

Figure C.37: Results of the operation “CREATE Activity“

C.10 Unit tests on the most important methods of the General REST
API

The following sections contain figures of the unit tests and results.

C.10.1 Setup for SmartContractServiceTest class

This class contains the tests for the methods that interact with the Smart Contract API.

C.10 Unit tests on the most important methods of the General REST API 95

Figure C.38: Setup of the SmartContractServiceTest class

C.10.2 Unit test on the method “getAllProductLots“

This method returns all ProductLots.

Figure C.39: “getAllProductLots“ unit test

C.10.3 Unit test on the method “findProductLot“

This method returns a ProductLot by its ID.

Printscreens 96

Figure C.40: “findProductLot“ unit test

C.10.4 Unit test on the method “getAllActivities“

This method returns all Activities.

Figure C.41: “getAllActivities“ unit test

C.10.5 Unit test on the method “getTraceability“

This method returns the traceability of a ProductLot by its reference number.

Figure C.42: “getTraceability“ unit test

C.10 Unit tests on the most important methods of the General REST API 97

C.10.6 Unit test on the method “createProductLot“

This method creates a new ProductLot and returns it.

Figure C.43: “createProductLot“ unit test

C.10.7 Unit test on the method “createActivity“

This method creates a new Activity and returns it.

Figure C.44: “createActivity“ unit test

C.10.8 Unit test on the method “updateProductLotDocumentKeys“

This method updates the documents of a ProductLot.

Printscreens 98

Figure C.45: “updateProductLotDocumentKeys“ unit test

C.10.9 Unit tests on the method “download“

This method downloads a document from the AWS S3 Bucket by its key, it also checks if the

document fingerprint of the document to download is the same as the one requests (stored on the

blockchain), if it is not, it will throw an error. This method is from the class “FileStore“ and the

only setup is to instantiate the class.

Figure C.46: “download“ unit tests

C.10 Unit tests on the most important methods of the General REST API 99

C.10.10 Results of the presented unit tests

Figure C.47: Results of the unit tests

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Goals / Contributions
	1.4 Research Method - Design Science Research (DSR)
	1.5 Document structure

	2 Background
	2.1 Relevant Concepts
	2.1.1 Traceability in the Shipbuilding Industry
	2.1.2 Programming Concepts
	2.1.3 Languages and Technologies
	2.1.4 Environment and Deployment

	2.2 Related Works
	2.2.1 Discussion

	3 Process traceability in the shipbuilding industry
	3.1 System Modeling
	3.1.1 Functional Requirements
	3.1.2 Use Case Model
	3.1.3 Domain Model

	3.2 Proposed Architecture
	3.3 Implementation
	3.3.1 How the implementation was followed
	3.3.2 Technologies
	3.3.3 Description and presentation

	4 Experimental Validation
	4.1 Traceability System validation
	4.2 Identified problems
	4.3 Performance Tests

	5 Conclusions and Future Work
	5.1 Pros, Cons, and Pain points to make the change for a system like this
	5.1.1 Is it worth the change?
	5.1.2 Pros
	5.1.3 Cons
	5.1.4 Pain Points

	5.2 Achievements
	5.3 Future Work

	References
	A JSON examples
	A.1 The ``Activity`` property ``inputProductLots``
	A.2 The return of the Smart Contract operation ``GetTraceabilityByReferenceNum``

	B GitHub
	B.1 General REST API
	B.2 Smart Contract
	B.3 Web Application
	B.4 Mobile Application

	C Printscreens
	C.1 Swagger (Open API) implementation
	C.2 Code examples
	C.3 Mongo Express Service
	C.4 AWS S3
	C.5 Blockchain Explorer
	C.6 Web Application
	C.7 Web Application before refactoring
	C.8 Performance Tests with JMeter
	C.8.1 Tests on the recursive function with depth n = 1
	C.8.2 Tests on the recursive function with depth n = 5
	C.8.3 Tests on the recursive function with depth n = 15

	C.9 Performance Tests with JMeter
	C.9.1 Tests on operation ``GET ProductLots``
	C.9.2 Tests on operation ``CREATE ProductLot``
	C.9.3 Tests on operation ``CREATE Activity``

	C.10 Unit tests on the most important methods of the General REST API
	C.10.1 Setup for SmartContractServiceTest class
	C.10.2 Unit test on the method ``getAllProductLots``
	C.10.3 Unit test on the method ``findProductLot``
	C.10.4 Unit test on the method ``getAllActivities``
	C.10.5 Unit test on the method ``getTraceability``
	C.10.6 Unit test on the method ``createProductLot``
	C.10.7 Unit test on the method ``createActivity``
	C.10.8 Unit test on the method ``updateProductLotDocumentKeys``
	C.10.9 Unit tests on the method ``download``
	C.10.10 Results of the presented unit tests

