
§

STATE OF WEB3 SECURITY
Analysis of vulnerabilities in bug bounty reports

Ana Rita Amorim Melo

Escola Superior de Tecnologia e Gestão

State of Web3 security

Analysis of vulnerabilities in bug bounty reports

Autor(a)

Ana Rita Amorim Melo

Trabalho efetuado sob a supervisão de

Professor Pedro Filipe Cruz Pinto

Professor António Alberto dos Santos Pinto

Mestrado em Cibersegurança

18 de Dezembro de 2023

C

C

C

C

C

C

�����������
�
�����	������
�������
�
����������
��

State of Web3 security

Analysis of vulnerabilities in bug bounty reports.

a master’s thesis authored by

Ana Rita Amorim Melo

and supervised by

Pedro Filipe Cruz Pinto

Professor Adjunto, Instituto Politécnico de Viana do Castelo

António Alberto dos Santos Pinto

Professor Coordenador, Instituto Politécnico do Porto

This thesis was submitted in partial fulfillment of the requirements for the

Master’s degree in Cybersecurity at the Instituto Politécnico de Viana do CasteloVersão horizontal
(Principal)

Versão vertical

18 of December, 2023

Abstract

Web3 has its basis in blockchain and smart contract technologies, supporting secure,

distributed, and decentralized applications. Nonetheless, Web3 is still in the process of

evolution, and, as with any other software-based product, software bugs, security flaws,

and other vulnerabilities are expected to appear.

This thesis analyzes the severity of security vulnerabilities in Web3 based on publicly

available bug reports. Furthermore, an evaluation of several vulnerability detection tools

in smart contracts is carried out. Finally, a plugin is developed that allows integration

with a smart contract testing tool.

Through this analysis, it is possible to obtain a comprehensive view of the evolution

and trends related to the number of reports presented, growth by platform, severity clas-

sification, and amounts paid for discovering and reporting vulnerabilities. The plugin

developed as part of this study provides an additional tool to improve the security and

reliability of Web3-based applications.

Keywords: Web3. Blockchain. Smart Contract. Ethereum.

i

Resumo

A Web3 tem como base a tecnologias blockchain e os contratos inteligentes, supor-

tando aplicações seguras, distribúıdas e descentralizadas. No entanto, o Web3 ainda está

em processo de evolução e, tal como acontece com qualquer outro produto baseado em

software, é expectável bugs de software, falhas de segurança e outras vulnerabilidades.

Esta tese analisa a severidade das vulnerabilidades de segurança na Web3 com base em

relatórios de bugs dispońıveis publicamente. Para além disso, é realizada uma avaliação

de diversas ferramentas de detecção de vulnerabilidades em contratos inteligentes. Por

fim, é desenvolvido um plugin que permite a integração com uma ferramenta de teste de

contratos inteligentes.

Através desta análise é posśıvel obter uma visão abrangente da evolução e tendências

relacionadas ao número de relatórios apresentados, crescimento por plataforma, classi-

ficação de severidade e valores pagos por descoberta e submissão de vulnerabilidades.

O plugin desenvolvido como parte deste estudo fornece uma ferramenta adicional para

melhorar a segurança e confiabilidade de aplicações baseadas em Web3.

Palavras-chave: Web3. Blockchain. Smart Contract. Ethereum.

ii

Aknowledgements

I want to thank my teachers and advisors, Pedro Pinto and António Pinto. Through-

out my academic journey, they were like guides, leading me through the complexities of

this challenging research and writing process. In addition to being experienced in their

field, they demonstrated a tireless dedication to sharing valuable knowledge and providing

personalized guidance. They were more than just academic mentors; They were proper

drivers of my intellectual and personal growth. Their constant availability to brainstorm

ideas, answer questions, and offer specific guidance was invaluable support.

I want to thank IPVC-ESTG for all the support and resources provided throughout

my academic journey. The institution was essential in completing this thesis, providing

the environment and tools necessary for my academic growth.

I want to thank Tectank, who generously allowed me to use working hours to conduct

the meetings and research necessary for this thesis. The company not only provided

practical conditions for the development of this project but also provided a stimulating

and collaborative work environment. I want to express my sincere gratitude to the entire

team that was by my side. The support I received was unbelievable, with co-workers

understanding my academic responsibilities and constantly encouraging me to achieve my

goals. The gestures of support and understanding from the entire company have made a

substantial difference in my academic and professional journey. I am deeply grateful for

this opportunity and the incredible team I have worked with.

Finally, I want to thank my family and my boyfriend sincerely. The love, support, and

patience they showed me throughout this journey were the foundation that allowed me to

complete this stage. My family, especially my parents, brother, and grandmother, have

always given me unwavering support and constant encouragement and always believed

iii

in me and my potential. To my boyfriend João for his understanding and unconditional

support that made this path a more peaceful and motivating journey. My dedication to

this project and its successful completion are, in large part, a result of the love and support

I received from them.

iv

Contents

List of Figures vii

List of Tables viii

List of Listings ix

List of Abbreviations x

1 Introduction 1

1.1 Problem Statement and Motivation . 2

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Organization . 3

2 Blockchain and Web3 4

2.1 Blockchain . 4

2.2 Smart Contracts . 8

2.3 Web3 . 10

3 Web3 Vulnerability Status and Reporting 14

3.1 Web3 vulnerabilities . 14

3.2 Bug bounty platforms . 19

3.3 Summary . 21

4 Severity Analysis 22

4.1 Methodology . 22

v

4.2 Results . 30

4.3 Analysis and Discussion . 34

5 Remix plugin development 37

5.1 Features Comparison of Vulnerability Scanners 37

5.2 Plugin development . 40

6 Conclusions 49

References 51

Appendices A1

A Code for analysis of the Code4rena platform A2

vi

List of Figures

2.1 Blockchain process [20] . 5

2.2 Bitcoin evolution [10] . 7

2.3 Ethereum evolution [10] . 8

4.1 Adopted methodology . 23

4.2 Number of reports per source and severity 31

4.3 Number of reports by date and severity . 31

4.4 Number of reports by date and severity, stacked 32

4.5 Number of reports by date and platform, stacked 33

4.6 Total amount paid over the years, in thousands of dollars 34

4.7 Smart contracts deployed in the Ethereum [1] 35

5.1 Oyente - Analyzing vulnerabilities on a smart contract 39

5.2 Remix - Analyzing vulnerabilities on a smart contract 40

5.3 Plugin operation sequence diagram . 41

5.4 Plugin - Remix integration . 44

5.5 Plugin - Remix request . 45

5.6 Plugin - Request 1 - Part 1 . 46

5.7 Plugin - Request 1 - Part 2 . 46

5.8 Plugin - Request 2 - Part 1 . 47

5.9 Plugin - Request 2 - Part 2 . 47

5.10 Plugin - Review . 48

vii

List of Tables

4.1 Normalization of severity classifications . 29

5.1 Comparison of vulnerability detection tools for smart contracts 38

viii

List of Listings

3.1 Vulnerability code - Yield Protocol . 17

3.2 Corrected calculation of pool tokens to be acquired 17

3.3 Vulnerability code - Beanstalk . 18

3.4 Correction Code - Beanstalk . 18

4.1 Code used to analyze the Code4rena platform - Collect links 25

4.2 Code used to analyze the Code4rena platform - Analyze each collected link 25

4.3 Code used to analyze the Code4rena platform - Export the results to a CSV

file . 27

5.1 Backend Code . 42

ix

List of Abbreviations

CSV Comma-separated Values

CVE Common Vulnerabilities and Exposures

DApps Develop Decentralized Applications

DeFi Distributed Finance

ETH Ether

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTP GET Hypertext Transfer Protocol GET

HTTPS Hypertext Transfer Protocol Secure

MCyber Master in Cybersecurity

OWASP Open Web Application Security Project

SSL Secure Sockets Layer

URL Uniform Resource Locator

x

Chapter 1

Introduction

Web3 is envisioned as a backend revolution that replaces central data storage with a

widely distributed environment [35]. As a decentralized web, Web3 can bring advantages

such as mitigating problems concerning network vulnerabilities, misinformation, and in-

formation disorganization. Web3 allows for creating, identifying, contracting, exchanging,

commercializing, and managing public or private content, products, and services [6]. Also,

it can provide more security when creating scalable and accessible applications for private

information exchange, sharing, and transfer.

Web3 builds on technologies such as Blockchain and smart contracts, among others.

A Blockchain is a group of transactions that are part of a shared ledger that has been

entered into data storage and has been previously verified by multiple sources. In addition,

Blockchain is expected to make data secure and tamper-proof [46]. A smart contract

is purely electronic, written as code, supported, and enforced by the entire Blockchain

system [46]. Web3’s purpose is to bring about network decentralization and allow users to

have control over their online activities. Ethereum is a decentralized network that can run

applications, which can be seen as a set of smart contracts in a distributed environment.

These smart contracts can be implemented in Solidity, a high-level programming language

designed to create Develop Decentralized Applications (DApps) on the Ethereum platform.

The idea is to avoid dependency on a single entity, which must also store and manage users’

personal and business data [14].

Page 1 of 56

Chapter 1. Introduction

1.1 Problem Statement and Motivation

With its increased use, Web3 has become a more interesting and valuable target for

attacks. These attacks are usually targeted against its components, such as the underlying

Blockchain or the smart contracts themselves [26]. The problem is aggravated if is consid-

ered the Distributed Finance (DeFi) part of Web3, where financial services and solutions

move funds and money. Such funds and money can be stolen by hackers [23]. As with any

system and software, users are expected to encounter bugs and flaws that malicious people

might use to exploit it. An example is the Qubit Finance attack [25], which stemmed from

exploiting a security flaw in a smart contract, resulting in the unauthorized transfer of a

substantial sum of money, totaling $80 million that had never been deposited.

White hackers, upon discovering a software vulnerability or bug, aim to report them

so that the involved entities can correct them. This is widely known as bug-bounties,

and some online platforms enable this. The key idea behind bug bounties is to enable

better overall security of the online services and platforms that adopt it and still enable

white hackers to be awarded for their efforts. These programs offer monetary rewards for

discovering and reporting a vulnerability. Reports produced in this context can then be

used to improve the security of new or similar existing services.

1.2 Objectives

The main objective of this project is to collect, analyze, and categorize the reports of

vulnerabilities present in Web3. This research analyzes and perceives the level of growth

of Web3 over the last few years. In addition, a plugin is aimed to be created based on an

existing tool that enables the analysis of the vulnerabilities of an already published smart

contract.

1.3 Contributions

The work presented herein resulted in the following contributions:

1. Rita Melo. “Web3 Cybersecurity”. In: CyberSec 23. 24th January, Viana do

Castelo, Portugal, 2023 - In this work, an analysis of the severity of vulnerabilities

Page 2 of 56

Chapter 1. Introduction

related to Web3 was carried out, which was conducted based on publicly available

bug reports. The results examining trends and patterns made it possible to obtain

valuable conclusions about the security of Web3 and its potential future growth.

2. Rita Melo, Pedro Pinto, and António Pinto. “Severity Analysis of Web3 Security

Vulnerabilities based on Publicly Bug Reports”. In: Blockchain and Applications,

5th International Congress. (to appear). 12th-14th July, Guimarães, Portugal, 2023

- This study analyzed the severity of vulnerabilities in the context of Web3 based

on public bug reports. It took a more comprehensive approach, exploring a more

significant number of bug bounty platforms. This resulted in collecting a substan-

tially more considerable amount of bug reports and expanding the analyzed data

set. This expansion in data collection allowed for a more complete and comprehen-

sive analysis of Web3-related vulnerabilities. Various public reporting sources were

examined, enabling more robust trends and patterns to be identified in the Web3

security landscape.

1.4 Organization

This document is organized in the following chapters. Chapter 2 aims to further

introduce the relevant technologies and address contributions related to this topic that

others have made. Chapter 3 presents the explored platforms and discusses bug bounties

platforms. Chapter 4 details the methodology used for the analysis and collection of

vulnerabilities in Web3, also analyzing the results obtained. Chapter 5 describes the entire

process of developing a plugin for the Remix tool. Finally, in Chapter 6, the conclusions

are presented.

Page 3 of 56

Chapter 2

Blockchain and Web3

At the beginning of this chapter, the world of blockchains is explored, explaining both

their functioning and their application, covering both blockchains and smart contracts.

Ethereum, one of the leading blockchain platforms, is also discussed as to how it relates to

smart contracts and the general functioning of the blockchain. Next, Web3 addresses a new

version of the internet that is more decentralized, gives more power to users, guarantees

more privacy and security, and is more efficient.

Through this analysis, it is possible to understand how these technologies are related

and work together to shape the current technological scenario.

2.1 Blockchain

Blockchain is a digital data structure that stores information securely, transparently,

and decentralized [47]. It comprehends a series of data blocks, each of which contains a set

of transactions or information. These transactions range from cryptocurrency transfers to

property registrations or smart contracts [38].

Fig. 2.1 represents the logic of the blocks in the blockchain system. Each block on the

blockchain contains a secure hash, a unique string of characters generated from the data

collected in the previous block, along with new data from the current block. This process

creates a cryptographic link between blocks, ensuring the chain’s integrity [18].

This secure hash on each block is critical to ensuring the integrity and security of

the blockchain. When a new block is created, it contains information not only about the

Page 4 of 56

Chapter 2. Blockchain and Web3

Figure 2.1: Blockchain process [20]

transactions within it but also a hash of the previous block. This process begins a cryp-

tographic link that connects each block to its predecessor, thus forming the distinctive

feature of a blockchain, the continuous sequence of blocks. These hashes have significant

implications. First, they ensure that any attempt to change a particular block, such as

tampering with a past transaction, would require modifying all subsequent blocks, which

is infeasible, complex, and time-consuming due to the proof-of-work process or consensus

mechanism. Furthermore, this link between blocks creates a public report that allows

anyone to verify the integrity of the blockchain. Any discrepancy would be immediately

detected, making blockchain manipulation a significant challenge. Combining these el-

ements - the formation of blocks, the cryptographic link between them, and consensual

validation - establishes the security and immutability of the blockchain.

Unlike traditional centralized systems, such as banks or government institutions, a sin-

gle entity is responsible for recording and validating transactions. In the case of blockchain,

it operates decentralized, meaning no central authority controls the system [29]. On the

contrary, blockchain copies are distributed by network users, and these users validate and

record transactions consensually. Validation of transactions on the blockchain is carried

out through a ”mining” process (in the context of cryptocurrencies). Network participants

compete to solve complex mathematical puzzles, with the first person to solve the puzzle

being responsible for validating and adding a block to the chain. This is known as ”proof

of work” in the case of Bitcoin. Other consensus mechanisms are adopted on different

blockchains [32].

Page 5 of 56

Chapter 2. Blockchain and Web3

The main features of blockchain are:

• Immutability - Once a transaction is recorded in a block and added to the blockchain,

it becomes practically impossible to change. This is because any attempted change

would require modifying all subsequent blocks, which is extremely difficult and would

require massive computing power [2].

• Transparency - All transactions recorded on a public blockchain are visible to all

network participants, creating transparency that is essential for transaction trust.

• Decentralization - Blockchain distributes copies of the entire blockchain to every

node in the network, making it highly resistant to failures and attacks since there

is no single point of failure. This technology allows for a wide range of applications

in different sectors: finance, logistics chains, digital voting, and document manage-

ment, due to its ability to eliminate intermediaries, ensure security, and promote

transparency [44].

• Security - Is maintained through cryptography, whereby cryptographic keys digi-

tally sign and protect each transaction.

In addition to Bitcoin, other digital currencies, such as Ethereum, have gained sig-

nificant space. Blockchain enables secure and fast financial transactions, eliminating in-

termediaries and reducing transaction costs. Currently, there are already companies that

accept cryptocurrencies as a form of payment [4], and banks are exploring the potential of

Blockchain to improve the efficiency of financial services. Another promising application

of Blockchain is the management of property and asset records. By creating smart con-

tracts on the Blockchain, it is possible to automate the transfer of ownership of properties,

vehicles, and other assets. This process reduces bureaucracy and costs associated with real

estate and property transactions, making the process faster and safer. Regarding health-

care, patients can securely control access to their health data through blockchain-based

digital medical records [3]. Furthermore, technology allows for the rapid and secure shar-

ing of medical information between healthcare providers, improving the quality of services

and coordination of treatments. As blockchain adoption continues to grow, the world

must continue to explore the potential of Blockchain and develop appropriate regulations

Page 6 of 56

Chapter 2. Blockchain and Web3

to promote an enabling environment for innovation. With a strategic and collaborative

approach, it is possible to reap the benefits of this technological innovation and lead the

adoption of Blockchain in Europe and the world.

The evolution of Bitcoin and Ethereum from the beginning of their journeys to their

peaks in value in 2021 is fascinating and reveals the remarkable growth of the cryp-

tocurrency market. From the data presented in the Bitcoin evolution graph in Fig. 2.2,

the cryptocurrency has experienced remarkable growth since its initial emergence. This

growth culminated in the historic peak in value in 2021, when Bitcoin reached the impres-

sive mark of $64.44k. However, after this peak, the cryptocurrency entered a period of

decline, experiencing a devaluation trend.

Recently, Bitcoin has experienced ups and downs, but it is currently on an upward

trajectory [10]. This indicates that cryptocurrency continues to be a volatile asset and

is subject to significant fluctuations. Bitcoin’s evolution is influenced by several factors,

such as market demand, global adoption, and relevant news, contributing to its constantly

changing price dynamics.

Figure 2.2: Bitcoin evolution [10]

Fig. 2.3 represents the trajectory of Ethereum, and it can be checked that the evo-

lution of this cryptocurrency has been remarkably upward since its emergence. This

growth culminated in its value peak in 2021 when Ethereum reached an impressive level

Page 7 of 56

Chapter 2. Blockchain and Web3

of $4,724.31. However, after this culmination, the cryptocurrency began to experience a

devaluation trend.

Figure 2.3: Ethereum evolution [10]

Both Bitcoin and Ethereum reached their peaks in value in 2021, a year that marked

the rise of public and institutional interest in cryptocurrencies. This simultaneity of peaks

reflects the interlinkage of the leading cryptocurrencies on the market, as many investors

keep a close eye on both assets. However, the subsequent trajectories of both currencies

show that, although they share points of contact, they also have distinct characteristics

and fundamentals that affect their evolutions.

2.2 Smart Contracts

A smart contract is a self-executing computer program that operates on top of a

blockchain, the decentralized digital infrastructure that underpins cryptocurrencies such

as Bitcoin and Ethereum [48]. These contracts are designed to automate and facilitate

the execution of agreements and transactions between parties without the need for inter-

mediaries such as banks, notaries, or lawyers.

The main functionality of a smart contract is the ability to define and comply with

predefined rules automatically and transparently. When two parties agree to establish

a smart contract, the terms of the contract are codified. This code is executed on the

Page 8 of 56

Chapter 2. Blockchain and Web3

Blockchain when specified conditions are met [31]. For example, an insurance contract

could be programmed to automatically pay compensation to an insured when specific

criteria, such as a road accident recorded on the Blockchain, are met. Smart contracts

offer several advantages. They automate contract execution, speeding up processes and

reducing errors. Furthermore, they guarantee complete transparency, as all transactions

and terms are immutably recorded on the Blockchain [19]. Security is undeniable, thanks

to the encryption and decentralization of Blockchains, making them highly resistant to

fraud. They also reduce costs, eliminating intermediaries and making contracts more

accessible to different businesses. These characteristics make smart contracts a promising

innovation in commercial transactions. Although smart contracts offer several advantages,

they face challenges, such as legal issues surrounding their application and the risk of code

failures [39].

The relationship between blockchain and smart contracts is a synergistic union trans-

forming how society conducts business and transactions. Blockchain provides the secure

and reliable foundation necessary for the immutable execution of smart contracts, while

smart contracts bring automation and authenticity to these transactions. As these tech-

nologies continue to evolve, they are likely to witness an exponential increase in the ap-

plications of smart contracts across industries, redefining how individuals interact and do

business in the digital world [33].

Ethereum is a decentralized global network allowing users to conduct transactions,

create smart contracts, and DApps [45]. Its cryptocurrency unit, Ether (ETH), is used as

a medium of exchange within the network and as an incentive for miners who ensure its

security and operation [9].

It allows the development of dApps, decentralized applications that work on the

blockchain [43]. These dApps can be used in various industries, from finance to gam-

ing. Furthermore, it allows the creation of complex smart contracts, which makes it a

versatile platform for a wide range of use cases, such as electronic voting systems, DeFi,

and even blockchain-based games. DeFi refers to protocols, applications, and smart con-

tracts built on blockchain technology to make various financial services available without

intermediaries, such as banks or conventional financial institutions [21]. These services

include lending, interest-bearing, asset swapping, staking, yield farming, and more.

Page 9 of 56

Chapter 2. Blockchain and Web3

The relationship between Ethereum, Blockchain, and smart contracts is complex and

is profoundly reshaping the digital landscape. Exploring the core technological innovation

that has driven substantial transformation in financial systems and other sectors is essential

to understanding this interconnection. Ethereum, a blockchain platform, is the epicenter

of this relationship. It allowed smart contracts to become a functional reality. These

smart contracts are self-executing computer programs based on pre-defined rules and are

housed on the Ethereum blockchain. Blockchain, in turn, serves as the foundation of this

infrastructure. It is a decentralized, immutable, and transparent registration technology

that records all transactions carried out on the Ethereum network. This transparency and

security are crucial for trust in digital operations. Smart contracts are essentially the point

of intersection between Ethereum and blockchain. They are written in code and stored on

the Ethereum blockchain. When the conditions specified in these contracts are met, they

are automatically executed, eliminating the need for intermediaries or trust in the parties

involved. In short, the relationship between Ethereum, Blockchain, and smart contracts

is symbiotic. Ethereum provides the environment for the creation and execution of smart

contracts, while Blockchain ensures the security and immutability necessary to sustain

these smart contracts. This technological triad is challenging traditional conventions,

opening up new possibilities for process automation, transaction security, and the creation

of innovative decentralized applications.

2.3 Web3

Web3 is a revolutionary vision that creates a decentralized and autonomous online

environment where users have greater control over their data, digital identities, and inter-

actions on the network [5]. It represents a fundamental change compared to Web2, char-

acterized by the centralization of power in the hands of large technology companies [13].

In Web3, decentralization is the keyword. It is built on technologies such as blockchain

and cryptocurrencies, which allow for the creation of peer-to-peer networks where trans-

actions and interactions occur directly between users without centralized intermediaries.

Users can exchange information, carry out financial transactions, and participate in smart

contracts without depending on companies or government institutions [37]. Furthermore,

Page 10 of 56

Chapter 2. Blockchain and Web3

on Web3, users have greater control over their data. This implies that personal informa-

tion is not stored on centralized servers but on distributed and encrypted storage systems

controlled by the user. Privacy concerns persist and can be mitigated as Web3 appli-

cations and services are built around the need to adhere to certain privacy principles.

This becomes challenging, especially since many blockchain technologies are inherently

transparent, recording all transactions in plain text on the ledger [30].

Web3 is the result of a gradual evolution from Web2. Web2 is the Internet as it

is known today, where large technology companies like Google, Facebook, and Amazon

dominate the digital landscape [34]. These companies collect and control massive user

data, becoming essential intermediaries in online lives. The transition to Web3 began

with the popularization of blockchain and cryptocurrencies, notably Bitcoin, which was

the first practical application of this revolutionary technology. Blockchain introduced the

idea of a distributed, immutable ledger where transactions are recorded transparently

and securely without a central authority. Later, Ethereum, a programmable blockchain

platform, brought the ability to create smart contracts, which are autonomous programs

that automatically perform actions when certain conditions are met. This paved the way

for various decentralized applications (dApps) and digital tokens, shaping Web3. Web3

responds to growing concerns about privacy, security, and centralization in Web2.

Decentralization is the foundation of Web3 and one of its fundamental principles. In

Web3, decentralization means that power is distributed more evenly among users and

is not monopolized by intermediaries or centralized authorities [6]. Blockchain, the core

technology of Web3, plays a crucial role in decentralization. It is a distributed ledger

maintained by a global network of users rather than a single central entity. This means

there is no single point of failure, making the system more resistant to attacks.

Web3 enhances autonomy, privacy, security, scalability, and efficiency, providing in-

dividuals with greater control over their digital identities and interactions on the Inter-

net [12].

Regarding autonomy, Web3 presents itself through various means [7]:

• Data Ownership: Users have complete control over their data. Instead of trusting

companies to store and protect this information, users can store their data securely

Page 11 of 56

Chapter 2. Blockchain and Web3

in distributed, encrypted systems. This avoids concerns about privacy breaches and

data leakage.

• Self-sovereign identity: On Web3, users can create self-sustainable digital iden-

tities. In other words, a single digital identity can be used across multiple online

platforms, eliminating the need to create separate accounts. These user controls

have access to information about their identity.

To ensure privacy and security, decentralization and cryptography are important [8],

as follows.

• Data Privacy: Decentralization prevents user data from being centralized on com-

pany servers, minimizing the risk of privacy violations. Users control how their data

is shared and who has access to it.

• Secure Communications: Communication onWeb3 is often end-to-end encrypted,

ensuring that only parties can read messages. This protects against interception of

communications by third parties.

• Secure Authentication: Self-sustaining digital identities are protected by encryp-

tion, ensuring that only the authorized user can access the identity.

However, despite these privacy and security improvements, Web3 faces challenges, such

as the need for user education on protecting their private keys and sensitive information.

Scalability [37] and efficiency [49] are significant challenges Web3 faces as it grows.

While decentralization and security are key priorities, the ability to handle a large volume

of transactions and interactions is essential to making Web3 viable on a global scale. One

of the main concerns regarding scalability is the ability of blockchain networks to process

transactions quickly and efficiently. Many blockchains, such as Bitcoin and Ethereum,

have faced congestion and high transaction fees during high demand. This could be an

obstacle to mass adoption and widespread use of Web3. To face this challenge, many

projects on Web3 are working on developing scalability solutions, such as sharding, i.e.,

a technique that divides the blockchain into small parts, into fragments; each shard op-

erates independently and processes only a subset of the network’s transactions, and more

Page 12 of 56

Chapter 2. Blockchain and Web3

efficient consensus protocols. These solutions aim to increase the processing capacity of

blockchains, allowing a more significant number of transactions per second.

In summary, Web3 is shaping the future of the Internet and digital society, introducing

a revolutionary vision of decentralization, user autonomy, privacy, and security. It rep-

resents a direct response to the challenges of excessive centralization and lack of control

over user data on Web2. However, Web3 also faces significant challenges, from scalability

issues to the delicate balance between privacy and transparency. As this new digital era

evolves, Web3 and its community of users and developers must work together to overcome

these challenges and build a fairer, more transparent, and secure Internet.

Page 13 of 56

Chapter 3

Web3 Vulnerability Status and

Reporting

This chapter covers related work regarding vulnerability status and reporting, high-

lighting the significant contributions of researchers and practitioners concerning security

while using bug bounty platforms and scanning vulnerabilities in smart contracts. Then,

the concept of bug bounty platforms is explored in more detail. Later, the approach

differentiates and complements current research is then outlined.

3.1 Web3 vulnerabilities

The usage of Web3 contributed to the growth of related cyber-attacks, with Blockchain

and smart contracts being significant targets [40]. These attacks are primarily based on

vulnerability exploitation [26]. Snegireva [41] analyzed different vulnerabilities related to

Blockchain and smart contracts. A list of recently found vulnerabilities, publicly disclosed

using a Common Vulnerabilities and Exposures (CVE) identifier, is also presented. This

list includes vulnerabilities in software such as the Bitcoin Core (CVE-2020-14198), the

Ethereum virtual machine (CVE-2021-29511), or the Hyperledger product family (CVE-

2020-11093), for instance. The analysis concludes that the existing vulnerabilities were

either previously in the source code or have recently emerged due to the development of

new system features, such as the addition of smart contracts.

Sapna et al. [40] examined various types of vulnerabilities and attacks to the Blockchain.

Page 14 of 56

Chapter 3. Web3 Vulnerability Status and Reporting

They presented real attacks, which occurred between 2016 and 2019, in their explanation

of the different vulnerabilities they identified. These real-life attacks had impacts that

ranged from tens of thousands of dollars to 60 million dollars. They also compile a list

of security solutions and methods that could be used to mitigate security vulnerabilities.

They conclude that the analyzed attacks demonstrate the insecurity of smart contracts

and that it is necessary to continue researching this area to discover new security options

and appropriate testing methods.

Pise et al. [36] also analyzed blockchain-based security vulnerabilities that are specific

to smart contracts. They classify the different smart contract vulnerabilities into three

main blocks: platform-related, application-related, and code-related. The first is related

to security flaws that exist in the adopted platform, such as Ethereum or Hyperleger.

The second relates to the web applications that usually accompany smart contracts. The

third focuses specifically on security flaws in the smart contract code itself. The authors

specify each one and present a set of security measures. However, they mention that with

the growth of these systems, it is necessary to develop best practices to combat bugs and

future security risks.

Marchesi et al. [22] proposed a security assessment checklist for developing smart con-

tracts. Similarly to Pise et al., these authors classify vulnerabilities into the same three

(platform, application, and code). They start their work by identifying and analyzing

security patterns for DApps. Next, the authors propose that security checklists be applied

in different phases of the smart contract development lifecycle. In particular, they propose

security assurance checklists for the design, coding, and testing phases. Although this list

is being updated over time, this work is based on public sources, focusing on scientific

and forum articles. Their work is heavily based on the work of Open Web Application

Security Project (OWASP) and can be summed up to a collection of 48 patterns and best

practices for the secure development of smart contracts in Ethereum and Solidity.

Connelly in [11] addressed smart contract security, particularly focusing on the Ethereum

platform and providing a status of its current security state. In his work, Connelly pro-

poses a classification system for smart contracts. Through his analysis, he concluded that

smart contracts have immense vulnerabilities, many of which are unknown in their conse-

quences. A key distinction between vulnerabilities and exploits is made, stating that the

Page 15 of 56

Chapter 3. Web3 Vulnerability Status and Reporting

presence of a level of insecurity in the code of a smart contract (vulnerability) does not

mean that it can be actively exploited, or that its exploitation has a relevant impact. The

symbolic execution through Mythril, a code security analysis tool, was adopted to create

a digital registry of flawed smart contracts, accompanied by a rating system.

Matulevicius et al. [26] analyzed the adequacy of the existing static code analysis

tools to Web3 and their smart contracts. To do so, they developed purposely flawed smart

contracts and used tools to analyze them. The vulnerabilities in the flawed smart contracts

followed a confidentiality, integrity, and availability classification. They concluded that

Slither was the best tool in terms of accuracy and one of the best in terms of performance.

Nonetheless, the maximum obtained accuracy was 75%, with tools reaching only 25%

accuracy. In the best case, 25% of the vulnerabilities remain undetected by such static

analysis tools.

In this case, a critical vulnerability in the DeFi protocol called Yield Protocol was

identified and reported in April 2023 through the bug bounty platform Immunefi [17].

This vulnerability could have allowed an attacker to empty token reserves in a pool by

manipulating the balance of tokens in a specific contract in the protocol. Thanks to the

immediate detection and reports of a white hat via the Immunefi platform, the team

behind Yield Protocol acted quickly to patch the vulnerability. This action prevented

a possible loss of around $950,000 across several pools operating on the Arbitrum and

Ethereum blockchains. Yield Protocol is a DeFi protocol that offers loans with fixed

interest rates and fixed terms between borrowers and lenders. It operates with tokens

known as fyTokens, which can be exchanged directly for an underlying asset on a predefined

expiration date. The vulnerability was related to the Yield Protocol strategy contract,

which allowed liquidity providers to pool their funds into YieldSpace. By depositing

funds into this contract, liquidity providers generated strategic tokens whose quantity was

related to the amount deposited. These tokens could be burned to redeem the liquidity

provider’s tokens, along with any subsequent fee or interest earnings. The vulnerability

allowed manipulation of this process, which could have resulted in significant losses for

protocol users, but was avoided due to the team’s quick action and white hat reporting.

Page 16 of 56

Chapter 3. Web3 Vulnerability Status and Reporting

1 // Original calculation of pool tokens to be acquired

2 poolTokensObtained = pool.balanceOf(address(this)) * burnt / totalSupply_;

Listing 3.1: Vulnerability code - Yield Protocol

The mentioned vulnerability involved the use of the original formula that used the

function pool.balanceOf(address(this)) to calculate the number of tokens from a pool that

should be transferred to a user. This calculation method was considered insecure as it

allowed an attacker to manipulate the balance of this pool, making it susceptible to at-

tack. To address this vulnerability, the team behind Yield Protocol corrected the strategy

contract:

1 poolTokensObtained = poolCached_ * burnt / totalSupply_;

Listing 3.2: Corrected calculation of pool tokens to be acquired

This fix replaced pool.balanceOf(address(this)) with poolCached to calculate the pool

tokens transferred to the caller. This change eliminated vulnerability to attack, making

the system more secure.

In November 2022, a white hat identified and reported a critical vulnerability in the

Beanstalk protocol through Immunefi [16] that could result in the potential theft of assets

worth up to $3.1 million, including $537,000 in BEAN tokens and $2.5 million in non-

BEAN assets. Fortunately, due to the quick action of this white hat and the Beanstalk

rewards system in Immunefi, the Beanstalk team was able to remedy the issue, preventing

the loss of users’ funds. Beanstalk is a protocol built on Ethereum, which aims to create a

stablecoin called Bean and establish a monetary base for a decentralized economy on the

Ethereum network, keeping the value of the Bean at par with the dollar. The vulnerability

was identified in one of the Token Facet libraries used by the Beanstalk diamond proxy

contract, which allows modular updates and extensions after deployment. Token Facet is

responsible for the token transfer logic and the vulnerability was found in the transferTo-

kenFrom() function, which did not correctly check the provision for external transfers. It

allowed attackers to receive funds from accounts that had approved the Beanstalk contract

to manipulate their tokens via the ERC20 approve() function.

Page 17 of 56

Chapter 3. Web3 Vulnerability Status and Reporting

1 // Snippet 1: TokenFacet: transferTokenFrom ()

2 function transferTokenFrom(address from , address to, uint256 amount ,

TransferFromMode fromMode , TransferFromMode toMode) public override {

3 if (fromMode == TransferFromMode.INTERNAL) {

4 require(balanceOf(from) >= amount , "Bean: INSUFFICIENT_BALANCE");

5 }

6

7 if (fromMode == TransferFromMode.EXTERNAL) {

8 // Vulnerability: No balance check for external transfers

9 LibTransfer.transferToken(from , to, amount , TransferFromMode.

EXTERNAL);

10 }

11 }

Listing 3.3: Vulnerability code - Beanstalk

The Beanstalk team quickly resolved the issue, removing the vulnerable function and

introducing a new function called transferInternalTokenFrom(), which always operates in

INTERNAL fromMode mode. These changes were implemented by the Beanstalk Im-

provement Proposal (BIP).

1 // Introduction of a new function to fix the vulnerability

2 function transferInternalTokenFrom(address from , address to, uint256 amount

) public override {

3 require(balanceOf(from) >= amount , "Bean: INSUFFICIENT_BALANCE");

4

5 LibTransfer.transferToken(from , to, amount , TransferFromMode.INTERNAL)

;

6 }

Listing 3.4: Correction Code - Beanstalk

These code snippets illustrate the vulnerability found in the original transferToken-

From() function and how it was fixed by introducing the transferInternalTokenFrom()

function to ensure the security of transfers in the Beanstalk protocol. of the necessary

corrections.

To combat the vulnerabilities in Web3, specifically in smart contracts, exists on the

SolidityScan platform. This online platform allows users to verify the security of smart

contracts that have been published, see the general security of smart contracts, and allow

Page 18 of 56

Chapter 3. Web3 Vulnerability Status and Reporting

programmers to reduce the number of vulnerabilities that may arise.

3.2 Bug bounty platforms

Bug bounty platforms are online environments where companies and organizations

invite ethical hackers and cybersecurity experts to identify and report vulnerabilities in

their systems, applications, or websites [15]. These vulnerabilities, often called bugs, can

range from authentication flaws to complex security issues compromising data integrity or

user privacy. What makes bug bounty platforms unique is their collaborative, community-

driven approach. Instead of waiting for a malicious hacker to discover and leverage a

vulnerability, organizations hire ethical hackers to look for and report these vulnerabilities

responsibly. In return, these hackers receive monetary rewards or other incentives such as

public recognition.

The operation of a bug bounties platform follows the steps below:

• Invitation and Registration: The organization interested in strengthening its

cybersecurity invites ethical hackers to participate in its bug bounties platform.

These hackers register on the platform, agree to the established rules and conditions,

and are ready to start.

• Testing and Reporting: Ethical hackers exploit an organization’s systems for

vulnerabilities. When they find one, they report it to the organization through the

platform, accompanying it with detailed information about how the vulnerability

was found and how it could be exploited.

• Assessment and Reward: The organization assesses the severity of the vulnerabil-

ity and takes action to correct it. If the vulnerability is validated, the ethical hacker

is rewarded with money, prizes, or public recognition, depending on the platform’s

policies.

• Continuous Improvements: This process is not a one-time event. It is a con-

tinuous activity, as systems and applications are constantly evolving. Organizations

encourage ethical hackers to continue to look for vulnerabilities and contribute to

constant security improvements.

Page 19 of 56

Chapter 3. Web3 Vulnerability Status and Reporting

Bug bounty platforms represent an innovative approach to cybersecurity, leveraging

the collective intelligence of ethical hackers to protect digital systems. These platforms

may be considered to offer the following set of benefits:

• Early Discovery of Vulnerabilities: By engaging the ethical hacking commu-

nity, organizations can detect and fix vulnerabilities [24] before someone with bad

intentions exploits them.

• Cost Savings: Paying vulnerability bounties is often more cost-effective [42] than

dealing with a data breach’s financial and reputational consequences.

• Community Engagement: These platforms promote collaboration between ethi-

cal hackers and organizations, building a more robust security environment.

• Continuous Improvement: Cybersecurity is a constant effort. Bug bounty plat-

forms encourage continuous security improvement.

However, despite the clear advantages of bug bounty platforms, they come with sig-

nificant challenges. One of the most pressing challenges lies in screening and managing

vulnerability reports. As these platforms gain popularity, the volume of reports can in-

crease considerably, which can overwhelm organizations’ internal resources, delaying the

assessment and remediation of vulnerabilities. Furthermore, the quality of reports can

vary, with few needing to be more specific or adequately documented, making the assess-

ment task more complex. Another challenge is the appropriate delimitation of the scope

of the bug bounty programs, as the inadequate inclusion of critical systems or assets can

expose the organization to unplanned risks. Additionally, managing communication with

ethical hackers, including ensuring that reported vulnerabilities are kept confidential until

resolved, is critical to preventing premature and potentially harmful disclosure of infor-

mation. Ultimately, the fine line between ethical hackers and cybercriminals and concerns

about legal and ethical issues are essential considerations organizations must face when

implementing bug bounty programs. Therefore, while these platforms offer notable ben-

efits, their implementation requires a careful and well-thought-out approach to mitigate

these challenges and limitations.

In conclusion, bug bounty platforms represent an innovative and practical approach to

Page 20 of 56

Chapter 3. Web3 Vulnerability Status and Reporting

bolstering cybersecurity in an increasingly digitized world. Organizations can identify and

report vulnerabilities in systems, applications, and websites by inviting ethical hackers

to identify security holes before someone with bad intentions exploits them. These plat-

forms promote collaboration, continuous learning, and improved security while rewarding

bounty hunters. As technology evolves and cyber threats become more sophisticated, bug

bounties are poised to play an even more essential role in protecting data and ensuring

digital integrity. For companies and organizations committed to security, adopting and

investing in bug bounty programs is a proactive measure demonstrating responsibility and

commitment to protecting their assets and users’ privacy. With the support of the ethical

hacking community and the constant evolution of best practices, bug bounty platforms

continue to shape the future of cybersecurity.

3.3 Summary

This analysis differs from the others mainly because of the used sources that consist

of publicly available reports of bug-bounties platforms or company audits. This approach

made it possible to collect detailed and up-to-date information on security vulnerabilities

relating to Web3 that were identified and corrected, thus identifying the main trend.

In addition, data collection and analysis were automated, which enabled the rapid and

efficient extraction of accurate data from hundreds of collected reports.

Page 21 of 56

Chapter 4

Severity Analysis

In this chapter, the methodology is detailed step by step, to ensure a comprehensive

understanding of the used procedures and techniques. The collected data then be analyzed,

exploring the information and identifying relevant patterns and trends. Finally, in the

results and discussion phase, the meaning of the information previously obtained and its

connection with the research is discussed.

4.1 Methodology

The study adopted a specific methodology to systematically collect and analyze pub-

licly available reports. Fig. 4.1 depicts all the steps performed, from the starting point

of identifying and choosing the platforms, up to the moment of the final analysis of the

reports.

First, a stage of identification and careful selection of the platforms that would be

the target of this research was carried out. The sample included two main categories:

platforms that offer rewards for identifying security flaws (bug bounty) and provide reports

or audits related to security vulnerabilities in Web3 technology. In the platform selection

process, factors such as the number of reports available on each platform and the structure

of the reports were considered. Emphasis was placed on finding reports with a fixed and

predefined format. This has become a key criterion as it makes it possible to automate the

analysis of these reports. With a common structure, it is more feasible to develop code for

automated analysis that is capable of efficiently and effectively collecting and interpreting

Page 22 of 56

Chapter 4. Severity Analysis

Platform identification
and selection

Matches
exclusion

criteria

True

False

Reports excluded
(n = 72)

Immunefi
(n = 118)

Code4rena
(n = 160)

OpenZeppelin
(n = 158)

Spearbit
(n = 19)

Collection of reports
(n = 455)

Analysis of reports
(n = 383)

Manual random
validation

(sample : 10%)

Immunefi
(n = 63)

OpenZeppelin
(n = 9)

Figure 4.1: Adopted methodology

the data in the reports. As a result of this selection, four specific platforms were chosen to

serve as reporting sources: Immunefi1, Code4rena2, Spearbit3, and OpenZeppelin4. Each

platform has a substantial number of reports and meets the established selection criteria.

Therefore, the initial step of identifying and judiciously selecting the platforms was crucial

in ensuring that the subsequent process of collecting and analyzing reports was organized

and result-oriented.

In the subsequent phase, the collection of reports from the mentioned platforms was

carried out. This collection covered the period until the end of 2022 since, at the time of

collection, there was a reduced number of results referring to the year 2023. To carry out

this analysis, two different approaches to data collection were adopted: one manual and

the other automated.

The automated approach involves running custom code to analyze and extract crucial

data from the reports. This approach has been successful on the Code4rena and Spearbit

platforms. For each platform, scripts adapted to the context and particularities of each

platform were developed, allowing the automated collection of links to all available reports.

1https://immunefi.medium.com/
2https://code4rena.com/reports/
3https://github.com/spearbit/portfolio/tree/master/pdfs
4https://blog.openzeppelin.com/

Page 23 of 56

https://immunefi.medium.com/
https://code4rena.com/reports/
https://github.com/spearbit/portfolio/tree/master/pdfs
https://blog.openzeppelin.com/

Chapter 4. Severity Analysis

In contrast, a manual approach was employed to collect data from the Immunefi and

OpenZeppelin platforms. This was due to the less standardized structure of reports on

these platforms, which made automated collection difficult. The report links were carefully

and manually assembled in this manual process. Once the links to all the reports were

collected, specific information of interest was extracted, such as the report’s title, the date

of publication, and, when applicable, the amount paid for the discovery and notification

of each vulnerability. Due to variations in report formats on each platform, specific codes

were created and adapted to each source, enabling the organization and management of

the relevant data coherently. Details on the amounts paid were only available on the

Immunefi platform, as it is dedicated to vulnerability detection rewards. These reports

provide information on the amount paid for each identified and reported vulnerability. In

summary, at the end of this collection phase, 455 reports were obtained from the following

sources: 118 from Immunefi, 160 from Code4rena, 158 from OpenZeppelin, and 19 from

Spearbit. Each platform had specific codes adapted to the context for automated or

manual collection of relevant data.

The listings 4.1, 4.2, and 4.3 show an example code that analyzes the Code4rena plat-

form, more precisely, each report through the developed code. The full code is presented

in Appendix A.

Page 24 of 56

Chapter 4. Severity Analysis

1 import requests

2 from bs4 import BeautifulSoup

3 import datetime

4 import csv

5

6 # Part 1: Collect the links

7 url = "https :// code4rena.com/reports/"

8 response = requests.get(url)

9 page_content = response.content

10 soup = BeautifulSoup(page_content , "html.parser")

11 links = []

12

13 wrapper_report = soup.find("div", class_="wrapper -report")

14 if wrapper_report:

15 wrapper_contests = wrapper_report.find_all("div", class_="wrapper -

contest undefined")

16 for wrapper_contest in wrapper_contests:

17 wrapper_contest_content = wrapper_contest.find("div", class_="

wrapper -contest -content")

18 if wrapper_contest_content:

19 a = wrapper_contest_content.find("a")

20 if a:

21 links.append("https :// code4rena.com/" + a["href"])

Listing 4.1: Code used to analyze the Code4rena platform - Collect links

First, on Listing 4.1 the Uniform Resource Locator (URL) of the web page to be

analyzed is defined. An Hypertext Transfer Protocol GET (HTTP GET) request is made

to the specified URL, thus obtaining the page content. This content is stored in the

page content variable. Next, a BeautifulSoup object called soup is created to parse the

HyperText Markup Language (HTML) content of the page. Furthermore, an empty list

called links is initialized to store the links collected later. The page is scanned for the div

with the class ”wrapper-report.” If this div is found, all divs with the ”wrapper-contest

undefined” class inside it are collected. For each of these divs, the anchor element (<a>)

is located, and the ”href” attribute of that element is extracted and added to the links list

after being prefixed with ”https://code4rena.com/”.

Page 25 of 56

Chapter 4. Severity Analysis

1 # Part 2: Analyze each collected link

2 results = []

3

4 for link in links:

5 response = requests.get(link)

6 soup = BeautifulSoup(response.content , ’html.parser ’)

7 report_header = soup.find("div", class_="report -header")

8

9 title = None

10 date = None

11

12 if report_header:

13 h1 = report_header.find("h1")

14 if h1:

15 title = h1.text

16 h4 = report_header.find("h4")

17 if h4:

18 date = datetime.datetime.strptime(h4.text , "%Y-%m-%d").strftime

("%d/%m/%Y")

19

20 div = soup.find(’div’, class_=’report -container ’)

21 if div:

22 div_text = div.text.lower ()

23 category = ""

24 if "high risk findings" in div_text:

25 category += " High "

26 if "there were no high risk findings identified in this contest" in

div_text:

27 category = category.replace(" High", "")

28 if "medium risk findings" in div_text:

29 category += " Medium "

30 if "low risk and non -critical issues" in div_text:

31 category += " Low "

32 category += " Non -Critical "

33 if "low risk findings" in div_text:

34 category += " Low "

35 if "non -critical findings" in div_text:

36 category += " Non -Critical "

Page 26 of 56

Chapter 4. Severity Analysis

37

38 category_list = []

39

40 if "Low" in category:

41 category_list.append("Low")

42 if "Medium" in category:

43 category_list.append("Medium")

44 if "High" in category:

45 category_list.append("High")

46 if "Non -Critical" in category:

47 category_list.append("Non -Critical")

48

49 category_str = ", ".join(category_list)

Listing 4.2: Code used to analyze the Code4rena platform - Analyze each collected link

In the next phase, on Listing 4.2, the code iterates over the list of collected links.

For each connection, a new HTTP GET request is made to access the associated page.

BeautifulSoup 5 is used again to analyze the page content. The div with the class ”report-

header” is searched on the page for information such as the title and date of the report.

If the div is found, the <h1>and <h4>elements are examined to extract the title and

date, respectively. The date is formatted in ”DD/MM/YYYY” style. Subsequently, the

div with the class ”report-container” is analyzed for keywords that allow the report to

be categorized. Based on the identified keywords, a category string is constructed, which

may include values such as ”Low,” ”Medium,” ”High,” and ”Critical,” depending on the

characteristics of the report. The collected data, including title, date, category, and URL,

is added to the results list.

1 # Export the results to a CSV file

2 with open(’results.csv’, ’w’, newline=’’) as csvfile:

3 csv_writer = csv.writer(csvfile)

4 csv_writer.writerow ([’Title ’, ’Date’, ’Category ’, ’URL’])

5 csv_writer.writerows(results)

Listing 4.3: Code used to analyze the Code4rena platform - Export the results to a CSV

file

5https://pypi.org/project/beautifulsoup4/

Page 27 of 56

https://pypi.org/project/beautifulsoup4/

Chapter 4. Severity Analysis

Finally, on Listing 4.3 the results are exported to a Comma-separated Values (CSV)

file called ”results.csv”. This code was initially developed for the Code4rena platform.

For other platforms, the code was adapted as necessary to handle the different reporting

formats on each platform.

Then, all reports were subjected to careful analysis to determine their relevance within

the identified scope, resulting in the exclusion of a set of these reports. Code4rena and

Spearbit platforms focus exclusively on Web3 technology. Therefore, all reports from

these platforms were considered relevant for the analysis. Concerning the Immunefi and

OpenZeppelin platforms, it was found that these included reports that fell outside the

scope of the research. Therefore, these reports were excluded from the study. Both the

collection of data from these sources and the exclusion of inappropriate reports were carried

out manually. Reports configured as informative articles, monthly reports, and essays

that did not explicitly explain or analyze a vulnerability related to Web3 technology were

excluded from the analysis. In total, 72 reports were removed from the dataset, 63 from

Immunefi, and 9 from OpenZeppelin.

Next, the remaining 383 reports were analyzed. In this stage, the focus was on col-

lecting the severity rating assigned to each report. For this, a code was developed which

examined the text of the reports and collected information related to the severity of each

platform. During the development, execution, and subsequent testing of these codes, it

became evident that the classification obtained needed to be more accurate due to the di-

versity of reporting formats and the use of different terms to indicate severity, even within

the same platform. This situation led to an iterative code improvement process to improve

classification accuracy. To evaluate the effectiveness of the codes on all platforms and each

one individually, a random manual check was performed on a sample corresponding to 10%

of the results. This manual verification verified that 95.65% of the analyzed reports were

classified correctly, while 4.35% presented incorrect classifications. When analyzing each

source in detail, it was found that the reports from the Code4rena, Spearbit, and Immunefi

sources reached an accuracy of 100%. All reports sampled and analyzed from these sources

were classified correctly. However, concerning the OpenZeppelin platform, the accuracy

was 87%, indicating that fewer reports presented incorrect classifications. This accuracy

discrepancy is likely due to the variety of reporting formats and the choice of different

Page 28 of 56

Chapter 4. Severity Analysis

terms to refer to the severity on this platform.

Once the data collection phase of the reports was completed, the severity was classified.

Each platform uses its severity rating scale, with most platforms having four levels, except

Code4rena only has three. Table 4.1 shows the correspondence between the severity rating

of each platform and the used severity rating. To allow for a better comparison, the severity

ratings were normalized and the data was adjusted accordingly to make it comparable

across different platforms.

Table 4.1 presents the correspondence of the different severity classifications of each

platform to the classification used in the study. Terms used on each platform have been

normalized to common terminology within the scope of this study. This made it possible

to establish a basis for comparing the severity ratings of the different platforms, facilitating

the analysis of the collected data. The term ”Low” across all platforms has defaulted to

”Low” in the table. Likewise, ”Medium” has been retained as ”Medium” for all platforms.

For the highest severity level, which may be referred to as ”High” on some platforms and

”Critical” on others, the table adopts the term ”Critical” uniformly.

Table 4.1: Normalization of severity classifications
Code4rena Immunefi OpenZeppelin Spearbit Adopted Classification

Low Low Low Low Low

Medium Medium Medium Medium Medium

High High High High

High Critical Critical Critical Critical

After completing the normalization process, a set of instructions was created and exe-

cuted to establish the correspondence between the severity classifications of each platform

and the classification used in the study. Then the data was reviewed again, keeping only

the highest severity rating for each report. For example, if a report originally had four

rating levels (critical, high, medium, and low), only the critical rating would be considered

for that report after this further analysis. This adaptation reduced the number of rat-

ings displayed, giving greater prominence to the highest severity level. This is especially

relevant as this level is associated with more severe and urgent vulnerabilities. This ap-

proach of highlighting the highest severity rating provides a clearer view of the most severe

vulnerabilities that require immediate attention. In addition, it simplifies data analysis,

making it easier to understand and identify the main threats.

Page 29 of 56

Chapter 4. Severity Analysis

In conclusion, the study adopted a specific methodology to systematically collect and

analyze publicly available reports. The steps involved the careful identification of plat-

forms, the collection of reports, the analysis of relevance, the classification of severity,

and the normalization of the classifications. The cautious selection of platforms ensured

that the data was relevant and consistent with the scope of the research. Manual and

automated collection of reports allowed for a comprehensive analysis, while severity anal-

ysis revealed the importance of the most severe vulnerabilities. Normalizing the ratings

made it easier to compare across platforms. The study demonstrated the complexity of

Web3 vulnerability analysis and the need for adaptive approaches. In short, the applied

methodology provided valuable insights into the security of Web3 technology, contributing

to the understanding and mitigating potential risks.

4.2 Results

After collection and normalization, the data was analyzed to perceive the growth,

trends, and patterns of the identified vulnerabilities. Despite collecting reports that refer

to situations dated until the beginning of 2023, the records from 2023 were not considered

in the analysis because these were too few to be statistically significant.

The number of reports per source and severity is shown in Fig. 4.2. Considering

the Code4rena platform, there are only reports of critical, medium, and low severity, the

critical being predominant with 134 reports. Considering the Immunefi platform, there are

only reports of high and critical severity, the critical being predominant with 37 reports.

Considering the OpenZeppelin platform, there are reports of all levels of severity, the

critical being predominant with 35 reports. Finally, considering the Spearbit platform,

there are reports of all levels of severity, the critical and high being the predominant ones

with 8 reports each. Code4rena has the most significant number of reports, with 158

reports in total, and Spearbit has the smallest number of reports, with 19 reports in total.

Immunefi has a total of 39 reports, and OpenZeppelin has 79 reports. It is also noticeable

that in all platforms, the predominant severity level is the critical one, so it is possible to

conclude that most problems encountered on the analyzed platforms have critical levels of

severity.

Page 30 of 56

Chapter 4. Severity Analysis

0

50

100

150

200

Code4rena Immunefi OpenZeppelin Spearbit

Low Medium High Critical

Figure 4.2: Number of reports per source and severity

The number of reports by date and severity is shown in Fig. 4.3. The dates are

organized in semesters, and this figure depicts its evolution and trend over time. The

period analyzed comprises reports dated from the second half of 2016 to the second half

of 2022.

0

20

40

60

80

S2
/20
16

S1
/20
17

S2
/20
17

S1
/20
18

S2
/20
18

S1
/20
19

S2
/20
19

S1
/20
20

S2
/20
20

S1
/20
21

S2
/20
21

S1
/20
22

S2
/20
22

Critical High Medium Low

Figure 4.3: Number of reports by date and severity

Analyzing the low severity level, it has never had a very high number over the years,

Page 31 of 56

Chapter 4. Severity Analysis

with its peak being in the first half of 2020, 2021, and 2022 when it reached 8 reports.

The reasoning is that low-level vulnerabilities might not be appealing to be reported from

the security researchers’ point of view. Analyzing the medium level, it has been increasing

in recent years, and its peak is in the second half of 2022 when it reached 23 reports.

Analyzing the high level, it shows an increasing trend over the years. Particularly in

2022, it is possible to observe a steady increase, peaking in the second half of 2022 when

it reached 9 reports. Analyzing the critical level, it is noticeable that, over the last few

years, there has been significant growth in the number of reports, peaking in the first half

of 2022 with 70 reports. Overall, from 2020 onwards, there was a significant increase,

which may have been triggered by the forced digitalization brought about by the COVID-

19 pandemic. In summary, a significant growth trend in the number of critical reports can

be identified.

The stacked number of reports by date and severity is shown in Fig. 4.4, showing the

total number of reports per semester over the years.

0

25

50

75

100

S2
/20
16

S1
/20
17

S2
/20
17

S1
/20
18

S2
/20
18

S1
/20
19

S2
/20
19

S1
/20
20

S2
/20
20

S1
/20
21

S2
/20
21

S1
/20
22

S2
/20
22

Low Medium High Critical

Figure 4.4: Number of reports by date and severity, stacked

There was a peak in the first semester of 2022, in which there was a more significant

number of critical reports, precisely 70 out of a total of 86. The total number of reports

made in the two semesters of 2022 is similar and it can be concluded that there is a steady

increase in the total number of reports per year, which is also true if only considering the

Page 32 of 56

Chapter 4. Severity Analysis

critical reports. Since OpenZeppelin was founded in 2015, Spearbit in 2021, Code4rena in

2021, and Immunefi in 2020, only the oldest reports refer to OpenZeppelin, given that the

other platforms were founded more recently.

The total number of reports by date and platform is presented in Fig. 4.5.

0

25

50

75

100

S2
/20
16

S1
/20
17

S2
/20
17

S1
/20
18

S2
/20
18

S1
/20
19

S2
/20
19

S1
/20
20

S2
/20
20

S1
/20
21

S2
/20
21

S1
/20
22

S2
/20
22

Spearbit OpenZeppelin Code4rena Immunefi

Figure 4.5: Number of reports by date and platform, stacked

The results show that the OpenZeppelin platform has the longest database of records,

starting in the first semester of 2016 and up to the end of 2022. Worthy of note is

the fact that OpenZeppelin is not exclusively dedicated to Web3 security vulnerabilities.

Code4rena, Spearbit, and Immunefi sources have only recently begun to receive reports.

Comparing this Fig. 4.5 with Fig. 4.4, it is possible to identify a peak in the same period,

the first semester of 2022. Note that Fig. 4.4 does not include reports between 2016 and

the first semester of 2019, while Fig. 4.5 does. In particular, the reports collected from

the OpenZeppelin platform in such a period, do not include a severity classification. The

OpenZeppelin platform only more recently started to include the classification in their

reports. In summary, there is a clear growing trend over the years and the Code4rena

platform has amassed more reports in recent years when compared to the other platforms.

Security researchers receive bounties when they report real security vulnerabilities.

Fig 4.6 displays the total amount paid over the years, in thousands of dollars, for the

Immunefi platform.

Page 33 of 56

Chapter 4. Severity Analysis

0

5000

10000

15000

20000

25000

S2
/20
16

S1
/20
17

S2
/20
17

S1
/20
18

S2
/20
18

S1
/20
19

S2
/20
19

S1
/20
20

S2
/20
20

S1
/20
21

S2
/20
21

S1
/20
22

S2
/20
22

Figure 4.6: Total amount paid over the years, in thousands of dollars

From the collected data, the total amount paid for the reports analyzed was only

available in the Immunefi platform and the values obtained were in dollars, 3,162,347$ in

S1/2021, 3,608,515$ in S2/2021, and 24,215,042$ in S1/2022. These values show a steep

increase in the revenues paid, more precisely, an increase of more than 20,000,000$ in the

first half of 2022. Concerning the second half of 2022, there is a significant decrease in

the total amount paid, contrasting with a similar total number of reports. Nonetheless,

the number of reports on the Immunefi platform also decreased significantly, justifying the

results. Over the years, it is possible to verify that by 2022 the amount paid in reports

increased significantly, so by analyzing the previous graphs, in conclusion, there was an

increase in the number of reports, mainly of those who have a level of critical severity, so

it led to the rise in the amount paid.

4.3 Analysis and Discussion

Considering the results presented, reports have significantly increased over the last few

years, with a peak in the first half of 2022, when all platforms received reports. In addition

to the high number of reports, the growth of critical reports is also visible, demonstrating

that more and more vulnerabilities emerge that pose a risk to the security of smart con-

Page 34 of 56

Chapter 4. Severity Analysis

tracts. Concerning the amounts paid for discovering and reporting vulnerabilities, these

peaked in the same period as the remaining amounts, with a notable rise.

Figure 4.7: Smart contracts deployed in the Ethereum [1]

The Alchemy’s report [1] includes the number of recently deployed smart contracts,

per quartile, as shown in Fig. 4.7. In this graph, it is possible to analyze that the y-axis

represents the number of smart contracts deployed, and the x-axis represents quartiles

between 2020 and 2022. The minimum value was obtained in the third quartile of 2022,

with 826.9 thousand smart contracts deployed, and on the other hand, the maximum value

was in the second quartile of 2021, with 5.9 million smart contracts deployed.

Considering only the last quartile of 2022, it shows an increase of more than 453%,

corresponding to a total of 4.6 million smart contracts deployed. Still, the numbers show a

significant increase in smart contract deployment in 2021 and a significant overall decline

in 2022, when compared to 2021. On the other hand, there was a substantial increase in

the detection of vulnerabilities in 2022. This leads to the conclusion that, proportionately,

there are more smart contracts with security concerns.

In conclusion, the comprehensive analysis of data regarding vulnerabilities in smart

contract platforms provided an in-depth insight into the evolution of these vulnerabilities

over time and their implications. Some crucial findings emerged by studying reporting

sources, vulnerability severities, and time trends.

First, the analysis revealed a steady increase in the total number of reports, mainly

Page 35 of 56

Chapter 4. Severity Analysis

from 2020 onwards. The peak observed in the first half of 2022 suggests an intensification

of security concerns, possibly related to the digital acceleration induced by the COVID-

19 pandemic. In addition, the predominance of vulnerabilities classified as critical in

all analyzed platforms highlights the seriousness of the situation and the need for more

effective preventive measures.

The analysis of the distribution of vulnerabilities by severity revealed specific trends.

While the low-severity vulnerabilities showed limited variation over the years, the medium-

severity vulnerabilities gradually increased, with a notable peak in the second half of 2022.

The high severity category also showed a steady increase, reaching its peak in the same

year. However, critical vulnerabilities were the ones that drew the most attention, showing

significant growth, especially in the first half of 2022.

Analysis of bounties paid to security investigators uncovered a direct relationship be-

tween increasing detection of critical vulnerabilities and amounts paid. The exponential

increase in rewards in the first half of 2022 reflects the appreciation of early identification

and notification of these vulnerabilities, ensuring the soundness of smart contracts and

the security of ecosystems.

Graphs comparing the evolution of vulnerabilities with the number of smart contracts

deployed show a worrying correlation. The notable increase in critical vulnerabilities

coincides with a dramatic increase in the deployment of smart contracts, suggesting that

adopting these technologies is also accompanied by a proportional increase in the risk of

security breaches.

The detailed analysis of this data demonstrated the imperative need to strengthen se-

curity measures in smart contracts. The current scenario, marked by the constant increase

in critical vulnerabilities, requires continuous collaboration between security researchers,

developers, and communities, to mitigate risks and strengthen the integrity of these sys-

tems.

Page 36 of 56

Chapter 5

Remix plugin development

In this chapter, a detailed comparison of the characteristics of vulnerability detection

tools is carried out, and the plugin development is discussed. Analyzing the functionalities

of these tools is crucial to understanding how they can be improved to meet the specific

needs of checking vulnerabilities in smart contracts. Furthermore, the plugin development

process is explored, highlighting how plugins can be created and, in this case, integrated

into an existing tool.

5.1 Features Comparison of Vulnerability Scanners

In the first phase, an analysis was carried out on various tools/platforms that allowed

testing smart contracts. This analysis was made with the tools being open-source and free

and, each platform was analyzed individually, focusing on the characteristics addressed in

this study. The tools chosen for analysis and comparison were the following:

• Oyente 1 scans contracts for common vulnerabilities such as suspicious function

calls and incorrect value handling.

• Mythril 2 performs static analysis to identify vulnerabilities and security issues

such as access violations, indentation, and overflow/underflow issues.

• Securify 3 highlights potential issues such as access control failures and improper

1https://github.com/enzymefinance/oyente
2https://github.com/Consensys/mythril
3https://github.com/eth-sri/securify

Page 37 of 56

https://github.com/enzymefinance/oyente
https://github.com/Consensys/mythril
https://github.com/eth-sri/securify

Chapter 5. Remix plugin development

handling of values.

• Remix 4 provides features for writing, testing, deploying, and debugging smart

contracts. Additionally, it has static analysis capabilities to help identify potential

security issues.

• SmartCheck5 scans contracts for known vulnerabilities, such as malicious function

calls and suspicious code patterns.

• Vandal6 looks for common security vulnerabilities such as suspicious function calls,

incorrect value handling, and access control issues.

• Slither7 identifies known security issues and suspicious code patterns in contracts,

providing helpful information to improve contract security.

Table 5.1 summarizes the findings regarding support for blockchains and smart con-

tract programming languages. Most platforms support the Ethereum blockchain and the

Solidity smart contract language, however, the Mythril platform is here highlighted since

it runs in several versions, namely on Ethereum, EOS, Quorum, etc. Furthermore, it is

the only one that presents different languages for smart contracts, such as Solidity, Vyper,

Serpent, etc.

Table 5.1: Comparison of vulnerability detection tools for smart contracts
Tool Blockchain Programming language

Oyente Ethereum Solidity

SMythril Ethereum, EOS, Quorum, etc. Solidity, Vyper, Serpent, etc.

Securify Ethereum Solidity

Remix Ethereum, ETC, Quorum, etc. Solidity

SmartCheck Ethereum Solidity

Vandal Ethereum Solidity

Slither Ethereum Solidity

The testing phase of all the platforms selected for analyzing vulnerabilities in smart

contracts has begun, but challenges were encountered during this process. One of the

main complications discovered was that many platforms appear limited to only running

4https://remix.ethereum.org/
5https://github.com/smartdec/smartcheck
6https://github.com/usyd-blockchain/vandal
7https://github.com/crytic/slither

Page 38 of 56

https://remix.ethereum.org/
https://github.com/smartdec/smartcheck
https://github.com/usyd-blockchain/vandal
https://github.com/crytic/slither

Chapter 5. Remix plugin development

older versions of smart contracts. This presented a challenge, as many current projects use

newer versions of programming languages and, consequently, smart contract structures.

For instance, during the tests conducted with the Oyente tool, it was identified that it

can run smart contracts only up to Solidity version 0.4.19. Unfortunately, this limitation

prevents the analysis of contracts written in newer Solidity versions. This is particularly

problematic since frequent updates to the language can bring significant improvements in

security and efficiency.

Fig. 5.1 shows that a smart contract was tested with the Oyente tool to detect its

vulnerabilities. It is possible to observe that most of the vulnerabilities are false; they

are not present. Additionally, it encountered significant difficulties when trying to run

the other tools. Among them, Remix was the only one that proved more accessible and,

consequently, the only one that could execute the contracts without significant problems.

Figure 5.1: Oyente - Analyzing vulnerabilities on a smart contract

Fig. 5.2 shows that a smart contract was tested with the Remix tool to detect its

vulnerabilities. It is possible to see that the test has been completed successfully, and the

results are present on the left side of the panel. However, the other tools still need to

be improved. On the contrary, the compatibility limitation may reflect the ever-evolving

complexities of smart contract languages and structures.

Page 39 of 56

Chapter 5. Remix plugin development

Figure 5.2: Remix - Analyzing vulnerabilities on a smart contract

These challenges highlight the importance of keeping tools up-to-date and compatible

with the latest versions of smart contract languages and frameworks. During this research,

a promising solution to overcome the imposed limitations when running current versions

of smart contracts is the Remix tool. The main advantage of Remix is its support for

recent versions of smart contract programming languages. Although it was considered a

significant advancement, it detected the opportunity to expand its functionality to detect

vulnerabilities in various smart contracts more efficiently.

To achieve this goal, an innovative plugin within a React project was developed, which

incorporates the functionality of SolidityScan’s Quick Scan tool. This plugin can be inte-

grated with Remix, allowing developers to analyze the vulnerabilities of already published

smart contracts. Through localhost, users can easily add this plugin to Remix, expanding

its vulnerability scanning capabilities.

5.2 Plugin development

Fig. 5.3 presents a sequence diagram describing the interaction between Remix IDE,

the plugin, and the online security scanning service SolidityScan. This diagram offers a

clear view of the messages exchanged during the process.

When submitting requests for execution in the plugin, the order in which they are

Page 40 of 56

Chapter 5. Remix plugin development

Remix IDE

Remix IDE

Plugin

Plugin

SolidityScan

SolidityScan

Request
Request 1

Response 1

Request 2

Response 2

Response

Figure 5.3: Plugin operation sequence diagram

processed is relevant. The system ensures that orders are executed sequentially, one after

the other, rather than in parallel. This approach allows the plugin to keep track of

requests and wait for responses from SolidityScan before proceeding to the subsequent

request. This wait for a response is important to ensuring the security check’s accuracy

and completeness.

SolidityScan, as an online service, analyzes each security request in detail and returns

the results to the plugin. Only when the plugin receives the response from SolidityScan,

it will move it on to the subsequent request. This ensures that there are no conflicts or

overloads in the system, ensuring the effectiveness of the security check.

The key differentiator of this plugin compared to the original SolidityScan tool is the

ability to analyze multiple smart contracts simultaneously. This is critical for complex

projects that have numerous interdependent contracts. By allowing developers to analyze

and identify vulnerabilities in various parts of their smart contract system at once, the

plugin saves time and effort while strengthening the security of the project as a whole.

Furthermore, the developed project can be run in the local environment or integrated

into the Remix platform, meaning there are two different ways of using it. When run

locally, only the project is run; when integrated into Remix, the project is combined with

the Remix platform, transforming the final product into a plugin.

Page 41 of 56

Chapter 5. Remix plugin development

Additionally, direct integration with Remix provides a familiar environment for devel-

opers, allowing them to use a platform they already know to perform advanced security

analysis on their smart contracts. This may help to reduce the learning curve and facili-

tate adopting the vulnerability analysis practice, increasing awareness and responsibility

for contract security.

When starting a new React project, the first step is to create the basic framework using

the ”npx create-next-app” command. This hands-on approach gives a solid foundation to

start developing quickly. However, building an app goes beyond the initial framework

and involves configuration and customization to meet specific needs. In this context, the

”App.js” file plays a central role, where can define what is displayed on the frontend. In

this case, there was a need to interact with a web service. This motivated the creation of a

backend in Node.js to handle calls to the web service. React, and the backend integration

has become a fundamental part of the project. After configuring the ”App.js” file, securing

the development environment was essential. To achieve this goal, steps were taken to

run the local server (localhost) with Hypertext Transfer Protocol Secure (HTTPS). This

approach ensures encrypted and secure communication between the frontend and back end.

The steps for this configuration included generating Secure Sockets Layer (SSL) certificates

and implementing settings to enable HTTPS during local development. While this may

seem complex, ensuring the security of transmitted data cannot be underestimated.

The Listing 5.1 shows that the code sets up a web server using Node.js and Express.js.

1 app.get("/scan", (req , res) => {

2 var contractAddress = req.query.contract_address;

3 var contractPlatform = req.query.contract_platform;

4 var contractChain = req.query.contract_chain;

5

6 var url =

7 "https :// solidityscan.com/app/api -quick -scan -sse/?" +

8 "contract_address=" +

9 contractAddress +

10 "&contract_platform=" +

11 contractPlatform +

12 "&contract_chain=" +

13 contractChain;

Page 42 of 56

Chapter 5. Remix plugin development

14

15 res.setHeader("Access -Control -Allow -Origin", "https :// localhost :3000");

16

17 https

18 .get(url , (response) => {

19 let data = "";

20 response.on("data", (chunk) => {

21 data += chunk;

22 });

23 response.on("end", () => {

24 res.send(data);

25 });

26 })

27 .on("error", (error) => {

28 console.log("Request error: ", error.message);

29 res.status (500).send("Request error");

30 });

31 });

32

33 // HTTPS server configuration

34 const privateKey = fs.readFileSync("certificates/key.pem", "utf8");

35 const certificate = fs.readFileSync("certificates/cert.pem", "utf8");

36 const credentials = { key: privateKey , cert: certificate };

37

38 // Creating the HTTPS server

39 const httpsServer = https.createServer(credentials , app);

40

41 // Start the HTTPS server

42 httpsServer.listen (8000 , () => {

43 console.log("HTTPS server running on port 8000");

44 });

Listing 5.1: Backend Code

This server defines a route accessible via HTTP GET requests on the ”/scan” route. When

a client requests this route, the server executes the associated code. The ”/scan” route

expects to receive three parameters in the form of query parameters in the URL: con-

tractAddress (contract address), contractPlatform (contract platform), and contractChain

Page 43 of 56

Chapter 5. Remix plugin development

(contract chain). These parameters are essential to identify which smart contract should

be scanned by SolidityScan. The server extracts these parameters from the Hypertext

Transfer Protocol (HTTP) request. The code then constructs a URL to request a specific

endpoint in SolidityScan. This URL is assembled by combining the request parameters

with a base URL, allowing the server to effectively communicate to SolidityScan which

contract to verify, on which platform, and on which chain. After that, the code makes

an HTTPS request to SolidityScan using the assembled URL. As the response is received,

data is accumulated in the ”data” variable as it arrives in chunks. When the answer

is ultimately obtained, the data is returned to the client who made the request. If an

error occurs during the request, the code captures the error and responds with a status

of 500 (Internal Server Error) and an appropriate error message. Additionally, the code

configures an HTTPS server that listens on port 8000, ensuring that communication with

SolidityScan is secure and encrypted. In short, this code allows the plugin to communicate

with SolidityScan efficiently and securely, providing accurate and fast responses for smart

contract security verification. It is important to emphasize that for the plugin to work

in Remix and, consequently, the project in a local environment, it is necessary to have

HTTPS communication to communicate with the SolidityScan platform.

In the following figures, it is possible to observe the final version of the plugin already

integrated with the Remix tool.

Figure 5.4: Plugin - Remix integration

Page 44 of 56

Chapter 5. Remix plugin development

In Fig. 5.4, it is possible to see the Remix platform. In this image, the plugin is being

integrated with the platform. Within the remix, the Plugins option was selected, and then

the Connect to a Local Plugin option was selected, which opened the window shown in

the figure. In this same window, the name of the future plugin and the port on which it

is running on localhost was also indicated.

Figure 5.5: Plugin - Remix request

In Fig. 5.5, it is possible to see the plugin already integrated within the Remix tool.

On the left, it is possible to see a white page representing the various order options that

aim to be placed. Creating several order lines and deleting them in the image analyzed is

possible. Three fields must be filled in for each order: the platform, the contract chain,

and the contract address. In other words, it is only possible to analyze published smart

contracts.

In Fig. 5.6, it is possible to see the result of the first order executed. Initially, a list of

results for all requests is given, in which each request is expandable, allowing the user to

have a more detailed view and a deeper analysis of that specific contract. In this image,

it is possible to observe that the security score is 85,76. Furthermore, it is possible to

observe how many Critical, High, Medium, Low, Informational, and Gas vulnerabilities

they have. Then it is possible to analyze a threat scan summary that allows the developer

to provide an in-depth analysis of the code of a smart contract and highlight any possible

warning signs that could indicate a vulnerability.

Page 45 of 56

Chapter 5. Remix plugin development

Figure 5.6: Plugin - Request 1 - Part 1

Figure 5.7: Plugin - Request 1 - Part 2

In Fig. 5.7, it is possible to observe the remaining result of the first request, the contin-

uation of Fig. 5.6. Here, it is possible to notice that the contract is vulnerable to ERC-20

approval Race condition vulnerability. The ERC-20 approve function is vulnerable to a

frontrunning attack, which the token receiver can exploit to withdraw more tokens than the

allowance. Proper mitigation steps should be implemented to prevent such vulnerabilities.

In Fig. 5.8, it is possible to see the result of the second order performed. The severity

score is 90,18.

Page 46 of 56

Chapter 5. Remix plugin development

Figure 5.8: Plugin - Request 2 - Part 1

Figure 5.9: Plugin - Request 2 - Part 2

In Fig. 5.9, it is possible to check the remaining result of the second request. Here,

it is possible to see that the contract is vulnerable to the presence of minting function

condition. The contract analyzed can mint new tokens. The mint functions were detected

in the contracts. Mint functions are used to create new tokens and transfer them to the

user’s/owner’s wallet to whom the tokens are minted. This increases the overall circulation

of the tokens.

In Fig. 5.10, it is possible to see the compressed list of request results. The developer

Page 47 of 56

Chapter 5. Remix plugin development

Figure 5.10: Plugin - Review

can then expand each request to review the analysis performed and must press the Restart

scan button to start the process again and clear all data.

Page 48 of 56

Chapter 6

Conclusions

In the context of Web3, whose objective is to decentralize the network and give users

control over their online activities, it is crucial to recognize the existence of vulnerabil-

ities that can have severe consequences and negatively affect the entire system. This

investigation allowed to analyze the number of vulnerabilities reported in smart contracts,

presenting total values and trends related to the number of reports, severity, and financial

compensation. This analysis shows that over the past few years, there has been a signifi-

cant increase in the total number of reports and critical reports. There has also been an

increase in the amounts paid to security researchers, directly related to the increased avail-

ability of smart contracts on the market. This study reveals that security vulnerabilities

in Web3 are constantly being discovered and reported. This demonstrates the continued

evolution of Web3 and the need to explore solutions to combat these ever-evolving vul-

nerabilities. The developed plugin significantly contributes to identifying and mitigating

vulnerabilities in already published smart contracts. Through its implementation, devel-

opers can monitor the status of their already published contracts, understanding their

vulnerabilities, if any. This tool not only helps improve security but also promotes trust

in Web3.

For future work, a better categorization of the collected reports is recommended, con-

sidering the codes’ vulnerabilities. In this way, it may be possible to create a classification

of the main flaws and, subsequently, an audit checklist for the development of smart con-

tracts. Regarding the plugin, its expansion and improvement can further contribute to

security on Web3, improving vulnerability detection and providing an additional layer of

Page 49 of 56

Chapter 6. Conclusions

protection for decentralized applications.

Page 50 of 56

References

[1] Alchemy. Web3 Developer Report Q4 2022. 2022. url: https://www.alchemy.com/

blog/web3-developer-report-q4-2022 (visited on 01/17/2023).

[2] Omar Ali et al. “A Comparative Study: Blockchain Technology Utilization Benefits,

Challenges and Functionalities”. In: IEEE Access 9 (2021), pp. 12730–12749. doi:

10.1109/ACCESS.2021.3050241.

[3] Asaph Azaria et al. “MedRec: Using Blockchain for Medical Data Access and Per-

mission Management”. In: 2016 2nd International Conference on Open and Big Data

(OBD). 2016, pp. 25–30. doi: 10.1109/OBD.2016.11.

[4] Connor Brooke.Who Accepts Bitcoin as Payment? 13 Companies and Websites That

Accept Cryptocurrency. 2023. url: https://www.techopedia.com/cryptocurrency/

who-accepts-bitcoin.

[5] Bin Cao, Zheng Yan, and Xu Xia. “Web3”. In: IEEE Communications Magazine

61.8 (2023), pp. 18–19. doi: 10.1109/MCOM.2023.10230032.

[6] Longbing Cao. “Decentralized AI: Edge Intelligence and Smart Blockchain, Meta-

verse, Web3, and DeSci”. In: IEEE Intelligent Systems 37.3 (2022), pp. 6–19. doi:

10.1109/MIS.2022.3181504.

[7] Tomer Chaffer and Justin Goldston. “On the Existential Basis of Self-Sovereign

Identity and Soulbound Tokens: An Examination of the ”Self” in the Age of Web3”.

In: (Dec. 2022), p. 2022.

[8] Chuan Chen et al. “When Digital Economy Meets Web3.0: Applications and Chal-

lenges”. In: IEEE Open Journal of the Computer Society 3 (2022), pp. 233–245. doi:

10.1109/OJCS.2022.3217565.

Page 51 of 56

https://www.alchemy.com/blog/web3-developer-report-q4-2022
https://www.alchemy.com/blog/web3-developer-report-q4-2022
https://doi.org/10.1109/ACCESS.2021.3050241
https://doi.org/10.1109/OBD.2016.11
https://www.techopedia.com/cryptocurrency/who-accepts-bitcoin
https://www.techopedia.com/cryptocurrency/who-accepts-bitcoin
https://doi.org/10.1109/MCOM.2023.10230032
https://doi.org/10.1109/MIS.2022.3181504
https://doi.org/10.1109/OJCS.2022.3217565

References

[9] Huashan Chen et al. “A Survey on Ethereum Systems Security: Vulnerabilities,

Attacks, and Defenses”. In: ACM Comput. Surv. 53.3 (June 2020). issn: 0360-0300.

doi: 10.1145/3391195. url: https://doi.org/10.1145/3391195.

[10] CoinMarketCap. Accessed November 2, 2023. url: https://coinmarketcap.com/.

[11] Daniel Steven Connelly. “Smart Contract Vulnerabilities on the Ethereum Blockchain:

A Current Perspective”. PhD thesis. Portland State University, 2020.

[12] Linus Gasser. “WEB3”. In: Apr. 2023. url: https : / / link . springer . com /

chapter/10.1007/978-3-031-33386-6_34.

[13] Chong Guan, Ding Ding, and Jiancang Guo. “Web3.0: A Review And Research

Agenda”. In: 2022 RIVF International Conference on Computing and Communi-

cation Technologies (RIVF). 2022, pp. 653–658. doi: 10.1109/RIVF55975.2022.

10013794.

[14] R. Gupta. Hands-On Cybersecurity with Blockchain: Implement DDoS protection,

PKI-based identity, 2FA, and DNS security using Blockchain. Packt Publishing,

2018. isbn: 9781788991858. url: https://books.google.pt/books?id=upBiDwAAQBAJ.

[15] Hideaki Hata, Mingyu Guo, and M. Ali Babar. “Understanding the Heterogeneity of

Contributors in Bug Bounty Programs”. In: 2017 ACM/IEEE International Sympo-

sium on Empirical Software Engineering and Measurement (ESEM). 2017, pp. 223–

228. doi: 10.1109/ESEM.2017.34.

[16] Immunefi. “Beanstalk Logic Error Bugfix Review”. In: (Feb. 2023). url: https://

medium.com/immunefi/beanstalk-logic-error-bugfix-review-4fea17478716.

[17] Immunefi. “Yield Protocol Logic Error Bugfix Review”. In: (July 2023). url: https:

/ / medium . com / immunefi / yield - protocol - logic - error - bugfix - review -

7b86741e6f50.

[18] Leila Ismail and Huned Materwala. “A Review of Blockchain Architecture and Con-

sensus Protocols: Use Cases, Challenges, and Solutions”. In: Symmetry 11.10 (2019).

issn: 2073-8994. doi: 10.3390/sym11101198. url: https://www.mdpi.com/2073-

8994/11/10/1198.

Page 52 of 56

https://doi.org/10.1145/3391195
https://doi.org/10.1145/3391195
https://coinmarketcap.com/
https://link.springer.com/chapter/10.1007/978-3-031-33386-6_34
https://link.springer.com/chapter/10.1007/978-3-031-33386-6_34
https://doi.org/10.1109/RIVF55975.2022.10013794
https://doi.org/10.1109/RIVF55975.2022.10013794
https://books.google.pt/books?id=upBiDwAAQBAJ
https://doi.org/10.1109/ESEM.2017.34
https://medium.com/immunefi/beanstalk-logic-error-bugfix-review-4fea17478716
https://medium.com/immunefi/beanstalk-logic-error-bugfix-review-4fea17478716
https://medium.com/immunefi/yield-protocol-logic-error-bugfix-review-7b86741e6f50
https://medium.com/immunefi/yield-protocol-logic-error-bugfix-review-7b86741e6f50
https://medium.com/immunefi/yield-protocol-logic-error-bugfix-review-7b86741e6f50
https://doi.org/10.3390/sym11101198
https://www.mdpi.com/2073-8994/11/10/1198
https://www.mdpi.com/2073-8994/11/10/1198

References

[19] Niclas Kannengießer et al. “Challenges and Common Solutions in Smart Contract

Development”. In: IEEE Transactions on Software Engineering 48.11 (2022), pp. 4291–

4318. doi: 10.1109/TSE.2021.3116808.

[20] Venkat Kasthala. “Blockchain key characteristics and the conditions to use it as

a solution”. In: (Aug. 2019). url: https : / / medium . com / swlh / blockchain -

characteristics-and-its-suitability-as-a-technical-solution-bd65fc2c1ad1.

[21] Robert Leonhard. “Decentralized Finance on the Ethereum Blockchain”. In: SSRN

Electronic Journal (Mar. 2019). url: http://dx.doi.org/10.2139/ssrn.3359732.

[22] Livio Pompianu Lodovica Marchesi Michele Marchesi and Roberto Tonelli. “Security

checklists for Ethereum smart contract development: patterns and best practices”.

In: (Aug. 2020). url: https://arxiv.org/pdf/2008.04761.pdf.

[23] Gavin Lucas. “Poly Network attack: Here’s what happened to biggest DeFi hack in

history”. In: CoinGeek (Aug. 2021). url: https://coingeek.com/poly-network-

attack-heres-what-happened-to-biggest-defi-hack-in-history/.

[24] Suresh S. Malladi and Hemang C. Subramanian. “Bug Bounty Programs for Cyber-

security: Practices, Issues, and Recommendations”. In: IEEE Software 37.1 (2020),

pp. 31–39. doi: 10.1109/MS.2018.2880508.

[25] Shaurya Malwa. “DeFi Protocol Qubit Finance Exploited for $80M”. In: CoinDesk

(Jan. 2022). url: https://www.coindesk.com/markets/2022/01/28/defi-

protocol-qubit-finance-exploited-for-80m/.

[26] Nedas Matulevicius and Lucas C. Cordeiro. “Verifying Security Vulnerabilities for

Blockchain-based Smart Contracts”. In: 2021 XI Brazilian Symposium on Comput-

ing Systems Engineering (SBESC). 2021, pp. 1–8. doi: 10.1109/SBESC53686.2021.

9628229.

[27] Rita Melo. “Web3 Cybersecurity”. In: CyberSec 23. 24th January, Viana do Castelo,

Portugal, 2023.

[28] Rita Melo, Pedro Pinto, and António Pinto. “Severity Analysis of Web3 Security

Vulnerabilities based on Publicly Bug Reports”. In: Blockchain and Applications,

5th International Congress. (to appear). 12th-14th July, Guimarães, Portugal, 2023.

Page 53 of 56

https://doi.org/10.1109/TSE.2021.3116808
https://medium.com/swlh/blockchain-characteristics-and-its-suitability-as-a-technical-solution-bd65fc2c1ad1
https://medium.com/swlh/blockchain-characteristics-and-its-suitability-as-a-technical-solution-bd65fc2c1ad1
http://dx.doi.org/10.2139/ssrn.3359732
https://arxiv.org/pdf/2008.04761.pdf
https://coingeek.com/poly-network-attack-heres-what-happened-to-biggest-defi-hack-in-history/
https://coingeek.com/poly-network-attack-heres-what-happened-to-biggest-defi-hack-in-history/
https://doi.org/10.1109/MS.2018.2880508
https://www.coindesk.com/markets/2022/01/28/defi-protocol-qubit-finance-exploited-for-80m/
https://www.coindesk.com/markets/2022/01/28/defi-protocol-qubit-finance-exploited-for-80m/
https://doi.org/10.1109/SBESC53686.2021.9628229
https://doi.org/10.1109/SBESC53686.2021.9628229

References

[29] Oliver Hinz Michael Nofer Peter Gomber and Dirk Schiereck. “Blockchain”. In: 2017.

[30] Marcus Bremseth Moe. “Web3 and its impact on Privacy and Personal Data Man-

agement”. In: (2022). url: https://www.theseus.fi/bitstream/handle/10024/

751597/Moe_Marcus_Thesis.pdf?sequence=2&isAllowed=y.

[31] Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish Jena. “An Overview

of Smart Contract and Use Cases in Blockchain Technology”. In: 2018 9th Inter-

national Conference on Computing, Communication and Networking Technologies

(ICCCNT). 2018, pp. 1–4. doi: 10.1109/ICCCNT.2018.8494045.

[32] Ch. V. N. U. Bharathi Murthy et al. “Blockchain Based Cloud Computing: Archi-

tecture and Research Challenges”. In: IEEE Access 8 (2020), pp. 205190–205205.

doi: 10.1109/ACCESS.2020.3036812.

[33] Ahmed S. Musleh, Gang Yao, and S. M. Muyeen. “Blockchain Applications in Smart

Grid–Review and Frameworks”. In: IEEE Access 7 (2019), pp. 86746–86757. doi:

10.1109/ACCESS.2019.2920682.

[34] Shimaa Ouf, Mona Nasr, and Yehia Helmy. “An enhanced e-learning ecosystem

based on an integration between cloud computing and Web2.0”. In: The 10th IEEE

International Symposium on Signal Processing and Information Technology. 2010,

pp. 48–55. doi: 10.1109/ISSPIT.2010.5711721.

[35] Andrew Park et al. “Interoperability: Our exciting and terrifying Web3 future”. In:

Business Horizons (2022). issn: 0007-6813. doi: https://doi.org/10.1016/j.

bushor.2022.10.005. url: https://www.sciencedirect.com/science/article/

pii/S0007681322001318.

[36] Rohini Pise and Sonali Patil. “A Deep Dive into Blockchain-based Smart Contract-

specific Security Vulnerabilities”. In: 2022 IEEE International Conference on Blockchain

and Distributed Systems Security (ICBDS). 2022, pp. 1–6. doi: 10.1109/ICBDS53701.

2022.9935949.

[37] Partha Pratim Ray. “Web3: A comprehensive review on background, technologies,

applications, zero-trust architectures, challenges and future directions”. In: Internet

of Things and Cyber-Physical Systems 3 (2023), pp. 213–248. issn: 2667-3452. doi:

Page 54 of 56

https://www.theseus.fi/bitstream/handle/10024/751597/Moe_Marcus_Thesis.pdf?sequence=2&isAllowed=y
https://www.theseus.fi/bitstream/handle/10024/751597/Moe_Marcus_Thesis.pdf?sequence=2&isAllowed=y
https://doi.org/10.1109/ICCCNT.2018.8494045
https://doi.org/10.1109/ACCESS.2020.3036812
https://doi.org/10.1109/ACCESS.2019.2920682
https://doi.org/10.1109/ISSPIT.2010.5711721
https://doi.org/https://doi.org/10.1016/j.bushor.2022.10.005
https://doi.org/https://doi.org/10.1016/j.bushor.2022.10.005
https://www.sciencedirect.com/science/article/pii/S0007681322001318
https://www.sciencedirect.com/science/article/pii/S0007681322001318
https://doi.org/10.1109/ICBDS53701.2022.9935949
https://doi.org/10.1109/ICBDS53701.2022.9935949

References

https://doi.org/10.1016/j.iotcps.2023.05.003. url: https://www.

sciencedirect.com/science/article/pii/S2667345223000305.

[38] Muhammad Habib ur Rehman et al. “Trust in Blockchain Cryptocurrency Ecosys-

tem”. In: IEEE Transactions on Engineering Management 67.4 (2020), pp. 1196–

1212. doi: 10.1109/TEM.2019.2948861.

[39] Sara Rouhani and Ralph Deters. “Security, Performance, and Applications of Smart

Contracts: A Systematic Survey”. In: IEEE Access 7 (2019), pp. 50759–50779. doi:

10.1109/ACCESS.2019.2911031.

[40] Sapna and Deepak Prashar. “Analysis on Blockchain Vulnerabilities & Attacks on

Wallet”. In: 2021 3rd International Conference on Advances in Computing, Commu-

nication Control and Networking (ICAC3N). 2021, pp. 1515–1521. doi: 10.1109/

ICAC3N53548.2021.9725403.

[41] Daria A. Snegireva. “Review of Modern Vulnerabilities in Blockchain Systems”. In:

2021 International Conference on Quality Management, Transport and Information

Security, Information Technologies (IT&QM&IS). 2021, pp. 117–121. doi: 10.1109/

ITQMIS53292.2021.9642862.

[42] Kiran Sridhar and Ming Ng. “Hacking for good: Leveraging HackerOne data to

develop an economic model of Bug Bounties”. In: Journal of Cybersecurity 7.1 (Mar.

2021), tyab007. issn: 2057-2085. doi: 10.1093/cybsec/tyab007. eprint: https:

//academic.oup.com/cybersecurity/article-pdf/7/1/tyab007/36578302/

tyab007.pdf. url: https://doi.org/10.1093/cybsec/tyab007.

[43] Ruhi Taş and Ömer Özgür Tanrıöver. “Building A Decentralized Application on

the Ethereum Blockchain”. In: 2019 3rd International Symposium on Multidisci-

plinary Studies and Innovative Technologies (ISMSIT). 2019, pp. 1–4. doi: 10 .

1109/ISMSIT.2019.8932806.

[44] Pinyaphat Tasatanattakool and Chian Techapanupreeda. “Blockchain: Challenges

and applications”. In: 2018 International Conference on Information Networking

(ICOIN). 2018, pp. 473–475. doi: 10.1109/ICOIN.2018.8343163.

Page 55 of 56

https://doi.org/https://doi.org/10.1016/j.iotcps.2023.05.003
https://www.sciencedirect.com/science/article/pii/S2667345223000305
https://www.sciencedirect.com/science/article/pii/S2667345223000305
https://doi.org/10.1109/TEM.2019.2948861
https://doi.org/10.1109/ACCESS.2019.2911031
https://doi.org/10.1109/ICAC3N53548.2021.9725403
https://doi.org/10.1109/ICAC3N53548.2021.9725403
https://doi.org/10.1109/ITQMIS53292.2021.9642862
https://doi.org/10.1109/ITQMIS53292.2021.9642862
https://doi.org/10.1093/cybsec/tyab007
https://academic.oup.com/cybersecurity/article-pdf/7/1/tyab007/36578302/tyab007.pdf
https://academic.oup.com/cybersecurity/article-pdf/7/1/tyab007/36578302/tyab007.pdf
https://academic.oup.com/cybersecurity/article-pdf/7/1/tyab007/36578302/tyab007.pdf
https://doi.org/10.1093/cybsec/tyab007
https://doi.org/10.1109/ISMSIT.2019.8932806
https://doi.org/10.1109/ISMSIT.2019.8932806
https://doi.org/10.1109/ICOIN.2018.8343163

References

[45] Dejan Vujičić, Dijana Jagodić, and Sinǐsa Randić. “Blockchain technology, bitcoin,

and Ethereum: A brief overview”. In: 2018 17th International Symposium INFOTEH-

JAHORINA (INFOTEH). 2018, pp. 1–6. doi: 10.1109/INFOTEH.2018.8345547.

[46] J. William. Blockchain: The Simple Guide to Everything You Need to Know. Cre-

ateSpace Independent Publishing Platform, 2016. isbn: 9781533161574. url: https:

//books.google.pt/books?id=xYauDAEACAAJ.

[47] Kou G. Xu M. Chen X. “A systematic review of blockchain”. In: 2019. doi: https:

//doi.org/10.1186/s40854-019-0147-z.

[48] Weiqin Zou et al. “Smart Contract Development: Challenges and Opportunities”.

In: IEEE Transactions on Software Engineering 47.10 (2021), pp. 2084–2106. doi:

10.1109/TSE.2019.2942301.

[49] Ziqiang Zuo. “Development, Application, And Regulation of Web3.0”. In: Frontiers

in Business, Economics and Management 9.3 (June 2023), pp. 22–27. doi: 10.

54097/fbem.v9i3.9431. url: https://drpress.org/ojs/index.php/fbem/

article/view/9431.

Page 56 of 56

https://doi.org/10.1109/INFOTEH.2018.8345547
https://books.google.pt/books?id=xYauDAEACAAJ
https://books.google.pt/books?id=xYauDAEACAAJ
https://doi.org/https://doi.org/10.1186/s40854-019-0147-z
https://doi.org/https://doi.org/10.1186/s40854-019-0147-z
https://doi.org/10.1109/TSE.2019.2942301
https://doi.org/10.54097/fbem.v9i3.9431
https://doi.org/10.54097/fbem.v9i3.9431
https://drpress.org/ojs/index.php/fbem/article/view/9431
https://drpress.org/ojs/index.php/fbem/article/view/9431

Appendices

Page A1 of A4

Appendix A

Code for analysis of the

Code4rena platform

1 import requests

2 from bs4 import BeautifulSoup

3 import datetime

4 import csv

5

6 # Part 1: Collect the links

7 url = "https :// code4rena.com/reports/"

8 response = requests.get(url)

9 page_content = response.content

10 soup = BeautifulSoup(page_content , "html.parser")

11 links = []

12

13 wrapper_report = soup.find("div", class_="wrapper -report")

14 if wrapper_report:

15 wrapper_contests = wrapper_report.find_all("div", class_="wrapper -

contest undefined")

16 for wrapper_contest in wrapper_contests:

17 wrapper_contest_content = wrapper_contest.find("div", class_="

wrapper -contest -content")

18 if wrapper_contest_content:

19 a = wrapper_contest_content.find("a")

20 if a:

21 links.append("https :// code4rena.com/" + a["href"])

Page A2 of A4

Appendix A. Code for analysis of the Code4rena platform

22

23 # Part 2: Analyze each collected link and export to CSV

24 results = []

25

26 for link in links:

27 response = requests.get(link)

28 soup = BeautifulSoup(response.content , ’html.parser ’)

29 report_header = soup.find("div", class_="report -header")

30

31 title = None

32 date = None

33

34 if report_header:

35 h1 = report_header.find("h1")

36 if h1:

37 title = h1.text

38 h4 = report_header.find("h4")

39 if h4:

40 date = datetime.datetime.strptime(h4.text , "%Y-%m-%d").strftime

("%d/%m/%Y")

41

42 div = soup.find(’div’, class_=’report -container ’)

43 if div:

44 div_text = div.text.lower ()

45 category = ""

46 if "high risk findings" in div_text:

47 category += " High "

48 if "there were no high risk findings identified in this contest" in

div_text:

49 category = category.replace(" High", "")

50 if "medium risk findings" in div_text:

51 category += " Medium "

52 if "low risk and non -critical issues" in div_text:

53 category += " Low "

54 category += " Non -Critical "

55 if "low risk findings" in div_text:

56 category += " Low "

57 if "non -critical findings" in div_text:

Page A3 of A4

Appendix A. Code for analysis of the Code4rena platform

58 category += " Non -Critical "

59

60 category_list = []

61

62 if "Low" in category:

63 category_list.append("Low")

64 if "Medium" in category:

65 category_list.append("Medium")

66 if "High" in category:

67 category_list.append("High")

68 if "Non -Critical" in category:

69 category_list.append("Non -Critical")

70

71 category_str = ", ".join(category_list)

72

73

74 # Export the results to a CSV file

75 with open(’results.csv’, ’w’, newline=’’) as csvfile:

76 csv_writer = csv.writer(csvfile)

77 csv_writer.writerow ([’Title ’, ’Date’, ’Category ’, ’URL’])

78 csv_writer.writerows(results)

Page A4 of A4

	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Problem Statement and Motivation
	Objectives
	Contributions
	Organization

	Blockchain and Web3
	Blockchain
	Smart Contracts
	Web3

	Web3 Vulnerability Status and Reporting
	Web3 vulnerabilities
	Bug bounty platforms
	Summary

	Severity Analysis
	Methodology
	Results
	Analysis and Discussion

	Remix plugin development
	Features Comparison of Vulnerability Scanners
	Plugin development

	Conclusions
	References
	Appendices
	Code for analysis of the Code4rena platform

