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Abstract — Indoor radon is a radioactive gas that can accumulate 
in homes and pose a health risk for humans. Forecasting indoor 
radon levels may be used as a tool for mitigating human exposure 
risk, and thus help to effectively manage indoor radon risk. 
Forecasting based on Machine Learning (ML) techniques 
involves predicting future levels of indoor radon gas based on 
past and current data, and thus help identify trends and patterns 
in the data over time. This work presents preliminary results 
regarding the implementation and evaluation of two LSTM- 
based approaches, for indoor radon forecasting, which can then 
be used as a tool to trigger preventive management procedures for 
Indoor Air Quality management. Preliminary results have shown 
that the normalized data using the Long Short-Term Memory 
(LSTM) algorithm proved to be the optimal approach for this 
application case, demonstrating superior accuracy across various 
forecasting time windows when compared to other approaches 
evaluated in this work. 
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I.  INTRODUCTION 

Indoor radon exposure has a known relationship with lung 
cancer and other respiratory system problems. In [1], Nunes 
et al., examined several studies that statistically justify the 
correlation between indoor radon exposure and the incidence 
of lung cancer in regions where concentrations are 
particularly high. Moreover, some studies also indicate 
that, even in situations where low indoor radon 
concentrations exist, a smaller tendency can also be 
identified, with respect to an increased incidence of lung 
cancer. The development of new technological solutions that 
lower indoor radon exposure, and thus contribute to the 
improved health of exposed populations, is an urgent matter. 

Forecasting indoor radon levels may be used as a tool 
for mitigating human exposure risk, helping to effectively 
manage indoor radon risk. Forecasting based on Machine 
Learning (ML) techniques involves predicting future levels 
of indoor radon gas based on past and current data. This 
data is typically organized as time-stamped time-series data, 
and may include, in addition to radon gas concentration, 
other environ- mental parameters such as temperature, 
humidity, atmospheric pressure, etc. These ML-based 

methods can be used to make predictions of indoor radon 
levels based on historical data and can help identify trends 
and patterns in the data over time. However, it is important 
to evaluate the performance of these ML-based methods, 
validate their predictions, and ensure they are robust and 
reliable before making decisions based on the forecasted 
radon levels. 

This work presents preliminary results regarding the 
implementation and evaluation of two LSTM-based 
approaches, for indoor radon forecasting, which can then be 
used as a tool to trigger preventive management procedures 
regarding Indoor Air Quality degradation. Preliminary 
results have shown that the normalized data using the Long 
Short-Term Memory (LSTM) algorithm proved to be the 
optimal approach for this application case, demonstrating 
superior accuracy across various forecasting time windows 
when compared to other approaches evaluated in this work. 

This document is organized as follows. Section II presents 
an overview of related works. Section III introduces the 
adopted methodology. Section IV is devoted to the detailed 
description of the implementation. Section V presents the 
results and lastly, in Section VI, the main conclusions and 
future work directions are put forward. 

II. RELATED WORKS 

Over the years, several approaches have been 
implementing not only the LSTM (Long-Short Term 
Memory) algorithm, but also some algorithms derived from it 
that are mentioned in this section, in order to be able to make 
short/long term forecasts, solving the RNN’s vanishing 
gradient problem [2], which is a problem encountered when 
training an artificial neural network with gradient-based 
learning methods and backpropagation. LSTMs differ from 
more conventional feedforward neural networks in that they 
feature feedback connections. With the use of this property, 
LSTMs can process whole data sequences (such as time 
series) without considering each data point separately. 
Instead, they can preserve pertinent information about earlier 
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data in the sequence to aid in the processing of subsequent 
data points. Because of this, LSTMs are very good at 
processing data sequences like text, audio, and general time-
series. In the end, LSTM networks are RNN’s extensions, 
which increase the memory. Building pieces for an RNN’s 
layers. By giving data “weights” LSTMs enable RNNs to 
either accept new information, forget it, or give it enough 
weight to affect the result. In [3], Adil Mir et al., proposed 
time-series models using several of algorithms, to predict 
soil radon concentration, as a precursor for an earthquake 
because several studies found correlations between the soil 
radon gas and earthquake occurrences. In [4], Qing Luo, et 
al., proposed an air condition cooling forecasting based on 
bidirectional LSTM. The author made a comparison between 
RNN, GRU, LSTM and Bi-LSTM and the Bi-LSTM 
outperformed the other algorithms, being the only one to 
outperform LSTM. In [5], Liu Wenya, et al., proposed a 
cooling, heating and electric load Forecasting for Integrated 
Energy Systems Based on CNN-LSTM. The author also 
compared the errors between three algorithms, CNN, LSTM 
and the CNN-LSTM itself, which was the one that 
outperformed the other two models which used CNN and 
LSTM. B Ravi Krishna et al. [6], proposed a LSTM model to 
predict short-term traffic flow. The authors claim to have 
chosen this model for the fact that it can memorize 
extensive history input data and find the best time lags 
automatically. In [7] Karim Moharm et al., proposed 
LSTM and bidirectional LSTM using different gate and state 
activation functions to predict the provisional trend of wind 
speed in a wind farm in Egypt. Idris Bodur, et al. [8], 
addressed short-term load demand forecasting based on 
LSTM, made a comparison to RNN, and concluded that it 
could predict with more than 90% accuracy and was more 
consistent in making short-term forecasts. In [9], Tiantian 
Tang et al., proposed medium and long-term precipitation 
forecasting method based on data augmentation and machine 
learning algorithms. The data augmentation algorithm was 
based on K-means clustering algorithm and SMOTE (Syn-
thetic Minority Oversampling Technique) and the machine 
learning algorithms used were RNN and LSTM. In [10] 
Jixiang Lu, et al., presented a hybrid LSTM-CNN model 
method to improve short-term load forecasting accuracy. The 
authors claim that in addition to examining the useful infor-
mation and prospective resources present in the enormous 
input data of CNN, the method leverages a deep network to 
learn temporal information through the LSTM network. The 
authors also made a benchmark using different algorithms, 
which included LSTM, ARIMA, and Random Forest. While 
dealing with time series forecasting problems, although there 
are more options and algorithms besides LSTM or LSTM 
variants, LSTM-based approaches for indoor radon forecast-
ing seemed very promising since these approaches are 
optimal to capture long-term and short-term dependencies in 
time series sequential data.  

III. MATERIALS AND METHODS 
The adopted methodology is depicted in detail in Fig. 1. 

To feed the machine learning models, the data has been 
acquired from RnMonitor project’s database [11] which 
consisted in IoT devices installed in several rooms of distinct 
buildings, which measured radon gas concentration, CO2, 
temperature, humidity and atmospheric pressure. The data 
was accessed using a Grafana API endpoint which returned 
measurements from all the sensors since May 2019, which 
was made once an hour. 

 
Fig. 1. Adopted methodology. 

To be able to operate on the fetched data, the following 
steps were taken: 

1) Data grouping and pre-handling.  After the fetch, 
it was noticed that the endpoint returned all data from 
all sensors at once, which represented a small problem. 
Some sensors had irrelevant data that needed to be 
handled. In a universe of thousands of records, it would 
be much more feasible to have the data grouped by a 
sensor on a database for better visualization. A Python 
script had been written to make that grouping on a local 
Mongo database. This was a critical step because it 
allowed us to see which sensors had relevant data and 
which had irrelevant or few data due to some kind of 
malfunction, and because that data was useless, it was 
discarded. 

2) Data cleansing. Unfortunately, in real world scenarios, 
data doesn’t come always clean. Most of the time we 
get empty values, which are not good for machine 
learning. In this step, it has been verified if those empty 
values existed, and they did. Deleting all this data 
would not be the wisest decision, so to solve this issue 
data imputation comes to play, which is the substitution 
of estimated values for missing or inconsistent data 
items. There are several approaches to deal with data 
imputation. A simple approach is by using 
interpolation. For this we used the Pandas library, an 
open-source data analysis and manipulation library for 
Python. This operation consists in inserting 
intermediate values between two other values. 
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IV. IMPLEMENTATION 
Dealing with a time-series forecasting problem, two 

approaches were used in this project to proceed with the model 
training and evaluation, which were LSTM and Bidirectional 
LSTM. These approaches were implemented on data based on 
two different sensors, which had the healthiest data. The data 
was divided into 3 parts: 

1) Training data - These took 80% of the data. 
2) Validation data - These took 3% of the data. 
3) Test data - These took 17% of the data. 

A. Architecture 
Figure 2 represents the overall forecasting architecture, 

and the additional building blocks of the indoor radon 
mitigation system. In this work, the ML algorithms under 
evaluation will be the LSTM (Long Short-Term Memory) 
and Bi-LSTM (Bidirectional LSTM), which are both 
recurrent neural net- works (RNNs) implementations 
commonly used in time series forecasting. Such 
implementations can handle short-term and long-term 
dependencies in time series data, and in this work will be 
applied for indoor radon forecasting. 

 
Fig. 2. Forecasting architecture. 

B. Model definition and Training 
The main goals on the model creation were to enable 

predicting radon levels until 6 hours ahead. The evaluation 
metric used was Mean Absolute Error (MAE) [12]. 

 
For the model training, using LSTM and Bi-LSTM, it was 

necessary to define a lag size, which is the number of 
samples the models will use to forecast future values. 
e.g.,  on the dataset, there is data (temperature, radon, 
pressure, CO2, and humidity) for every hour since May 2019. 
If we decide to train a model using a lag size of 6, the Xtrain 
data would include data from, for example, 1 PM, 2 PM, 3 
PM, 4 PM, and 5 PM, and the ytrain would be the data at 6 
PM. This process is repeated iteratively, storing the data in 
this specific format in an array to train the model. So, in this 
example, we would be making a model to predict data 1 hour 
ahead. If we wanted to predict 2 hours ahead, instead of 
passing 6 PM on the ytrain data, the data passed into it 
would be the data at 7 PM. This is the approach that was 
used for training the models. A total of 7 different lags were 

used to train these models, starting from lag 6 to 12, to 
compare which one would have the best error, with the 
lowest error being the best. These models were trained on 
data from two different sensors that had healthier data, 
meaning that there were no more than 30-40% missing 
data. It’s important to note that the impact of missing 
data on time-series forecasting can be more severe compared 
to other machine learning tasks, as time-series data is 
inherently temporal and missing values can disrupt the 
continuity of the series. For each of these sensors, data were 
applied both LSTM and Bi-LSTM algorithms, including the 
7 lags for each algorithm and in total. In machine learning, 
normalization is a technique used to adjust the range of 
feature values in a dataset. This process facilitates machine 
learning algorithms in learning and generalizing patterns 
effectively. The primary objective of normalization is to 
bring all the features to a similar scale and eliminate any bias 
caused by different units or ranges. In this project, the 
temperature variable can go up to 36°C or higher in the 
summer, while radon levels can reach up to 500 Bq/m3. The 
scales of the variables are disproportionate, which can hinder 
the model’s ability to generalize. To address this issue, 
normalization was applied to all the variables in the dataset. 
Normalized data is generally easier to train, requiring fewer 
epochs to converge and achieve optimal results. In the 
unnormalized data, 100 epochs were required for 
convergence, but with the normalized data, only 50 epochs 
were needed, resulting in less time to train. Further details of 
the comparison will be presented ahead. 

C. Forecasting 
Tables I, II, III, and IV, show the correlation between the 

lags and the forecasting window. Depending on the 
forecasting window size, it influences the final estimation 
error, i.e., the higher the window is, the higher the error will 
be. It also shows that the bigger the lag size, doesn’t mean 
that the Mean Absolute Error is going to be lower, which 
would be better. The Mean Absolute Error is actually simple 
to understand, if we look at table 1, on the 1H forecast result, 
on the lag 6 results, the Error is 37.59, this means that when 
evaluating the test data, which in this case had about 8000 
data points for each of those hours and lag sizes, the model 
was at least either 37.59 wrong above or 37.59 wrong below 
the true value of the forecast. 

V. RESULTS 
Having the model trained and ready for use, a web ap- 

plication has been created, to enable a final user to make an 
indoor forecast where a sensor is present, cf., Figures 3, 4, 5 
and 6. In this process, the user would get into the website 
and click on the forecast data, and if the sensor data was from 
the last 12 hours, the system would retrieve that data to a server 
responsible to make the predictions for the different hours and  
selecting  the  model which has the best error according to the 
lag and then retrieve the forecasts along with the errors and 
finally that data is presented to the user on the website, along 
with the last 5 hours radon levels just to situate the user how 
the radon level has been going and where it might be going.  
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TABLE I 
NON-NORMALIZED LSTM MEAN ABSOLUTE ERROR RESULTS 

Forecasting Window Lag 6 Lag 7 Lag 8 Lag 9 Lag 10 Lag 11 Lag 12 Training Duration 

1 Hour   34 Bq/m3 94 Bq/m3 38 Bq/m3 49 Bq/m3 36 Bq/m3 37 Bq/m3 37 Bq/m3 2h 15min 16s 

2 Hour 56 Bq/m3 57 Bq/m3 65 Bq/m3 56 Bq/m3 70 Bq/m3 57 Bq/m3   56 Bq/m3  2h 14min 48s 

3 Hour 68 Bq/m3 74 Bq/m3 73 Bq/m3 70 Bq/m3 69 Bq/m3 73 Bq/m3 79 Bq/m3 2h 16min 56s 

4 Hour 85 Bq/m3 87 Bq/m3 87 Bq/m3 85 Bq/m3 86 Bq/m3 91 Bq/m3 88 Bq/m3 2h 17min 19s 

5 Hour 98 Bq/m3   97 Bq/m3  109 Bq/m3 105 Bq/m3 106 Bq/m3 102 Bq/m3 100 Bq/m3 2h 41min 32s 

6 Hour 107 Bq/m3 110 Bq/m3 111 Bq/m3   106 Bq/m3  109 Bq/m3 114 Bq/m3 108 Bq/m3 2h 10min 5s 

 

 
Fig. 3. Web App GUI. Forecasting example using the LSTM method for the next 6 hours, with mean absolute error identified in red. 

 
 
 

TABLE II 
NON-NORMALIZED BI-LSTM MEAN ABSOLUTE ERROR RESULTS 

Forecasting Window Lag 6 Lag 7 Lag 8 Lag 9 Lag 10 Lag 11 Lag 12 Training Duration 

1 Hour 38 Bq/m3 36 Bq/m3 36 Bq/m3 36 Bq/m3 37 Bq/m3   35 Bq/m3  38 Bq/m3 6h 21min 24s 

2 Hour 56 Bq/m3 54 Bq/m3 52 Bq/m3 57 Bq/m3 60 Bq/m3 72 Bq/m3 57 Bq/m3 6h 56min 1s 

3 Hour 69 Bq/m3 68 Bq/m3 72 Bq/m3 71 Bq/m3 72 Bq/m3 73 Bq/m3 74 Bq/m3 5h 32min 10s 

4 Hour 84 Bq/m3 85 Bq/m3 83 Bq/m3 85 Bq/m3 88 Bq/m3 90 Bq/m3 87 Bq/m3 6h 35min 35s 

5 Hour 97 Bq/m3 99 Bq/m3 97 Bq/m3 98 Bq/m3 106 Bq/m3 100 Bq/m3 99 Bq/m3 4h 00min 15s 

6 Hour 105 Bq/m3 107 Bq/m3 105 Bq/m3 110 Bq/m3 112 Bq/m3 111 Bq/m3 110 Bq/m3 4h 19min 15s 

 

 
Fig. 4. Web App GUI. Forecasting example using the Bi-LSTM method for the next 6 hours, with mean absolute error identified in red. 
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TABLE III 
NORMALIZED LSTM MEAN ABSOLUTE ERROR RESULTS 

Forecasting window Lag 6 Lag 7 Lag 8 Lag 9 Lag 10 Lag 11 Lag 12 Training duration 

1 Hour 29 Bq/m3 29 Bq/m3 33 Bq/m3 29 Bq/m3 29 Bq/m3 32 Bq/m3 28 Bq/m3 2h 13min 6s 

2 Hour 44 Bq/m3 44 Bq/m3 47 Bq/m3 45 Bq/m3 44 Bq/m3 46 Bq/m3 43 Bq/m3 1h 5min 42s 

3 Hour 58 Bq/m3 59 Bq/m3 60 Bq/m3 60 Bq/m3 59 Bq/m3 61 Bq/m3 59 Bq/m3 29min 6s 

4 Hour 72 Bq/m3 73 Bq/m3 74 Bq/m3 74 Bq/m3 73 Bq/m3 74 Bq/m3 73 Bq/m3 31min 16s 

5 Hour 85 Bq/m3 86 Bq/m3 86 Bq/m3 87 Bq/m3 84 Bq/m3 86 Bq/m3 85 Bq/m3 29min 1s 

6 Hour 96 Bq/m3 97 Bq/m3 97 98 Bq/m3 94 Bq/m3 96 Bq/m3 95 Bq/m3 27min 9s 

 

 
Fig. 5. Web App GUI. Forecasting example using the LSTM method for the next 6 hours, with mean absolute error identified in red. 

 
 
 

TABLE IV 
NORMALIZED BI-LSTM MEAN ABSOLUTE ERROR RESULTS 

Forecasting window Lag 6 Lag 7 Lag 8 Lag 9 Lag 10 Lag 11 Lag 12 Training duration 

1 Hour 34 Bq/m3 36 Bq/m3 41 Bq/m3   32 Bq/m3  40 Bq/m3 32 Bq/m3 33 Bq/m3 2h 8min 33s 

2 Hour 49 Bq/m3 51 Bq/m3 55 Bq/m3 48 Bq/m3 54 Bq/m3 47 Bq/m3 48 Bq/m3 49min 10s 

3 Hour 64 Bq/m3 65 Bq/m3 69 Bq/m3 63 Bq/m3 68 Bq/m3 62 Bq/m3 62 Bq/m3 45min 16s 

4 Hour 78 Bq/m3 79 Bq/m3 83 Bq/m3 77 Bq/m3 81 Bq/m3 76 Bq/m3 75 Bq/m3 38min 45s 

5 Hour 90 Bq/m3 91 Bq/m3 96 Bq/m3 89 Bq/m3 92 Bq/m3 88 Bq/m3 86 Bq/m3 54min 44s 

6 Hour 101 Bq/m3 102 Bq/m3 107 Bq/m3 99 Bq/m3 102 Bq/m3 99 Bq/m3 96 Bq/m3 38min 53s 

 

 
Fig. 6. Web App GUI. Forecasting example using the Bi-LSTM method for the next 6 hours, with mean absolute error identified in red. 
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TABLE V 
FORECAST PERFORMANCE COMPARISON TABLE 

Date LSTM Bi-LSTM LSTM Bi-LSTM Real Values 

1 hour 27% [23%] 34% [29%] 29% [25%] 7% [7%] 643 Bq/m3 
2 hour 43% [35%] 22% [12%] 1% [1%] 13% [13%] 687 Bq/m3 
3 hour 38% [25%] 242% [71%] 19% [15%] 10% [9%] 672 Bq/m3 
4 hour 38% [29%] 33% [24%] 21% [15%] 11% [17%] 639 Bq/m3 
5 hour 38% [32%] 35% [37%] 6% [5%] 20% [19%] 714 Bq/m3 
6 hour 110% [52%] 40% [33%] 2% [2%] 23% [22%] 703 Bq/m3 

 
On the concept, the user may also switch between the 
algorithms, LSTM and Bi-LSTM to see the forecasts. Bi-
LSTM is stronger and better than a LSTM because it can 
consider both past and future inputs when making 
predictions, while a LSTM can only consider past inputs, 
however, as shown on the tables containing the Mean 
Absolute Error, the LSTM slightly outperformed Bi-LSTM 
using normalized and non-normalized data. The results 
showed that normalizing the data can reduce errors, though 
they may not always decrease significantly. However, 
training these normalized models takes much longer than 
training non- normalized ones, so using normalized data is 
preferable. The only drawback of this approach is that it takes 
a little longer to normalize the data in order to make 
unitary predictions and normalize the prediction in order to 
obtain the normal scale. Table V presents the difference in 
percentage between the predicted values and the real radon 
concentration values, including the error margin variation 
represented in percentage within square brackets. 

VI. CONCLUSIONS AND FUTURE WORK 
Forecasting indoor radon levels may be used as a tool for 

mitigating human exposure risk, and thus help to effectively 
manage indoor radon risk. This work presents preliminary 
results regarding the implementation and evaluation of two 
LSTM-based Machine Learning (ML) approaches for indoor 
radon forecasting, which can then be used as a tool to trigger 
preventive management procedures for Indoor Air Quality 
improvement. LSTM captures long-term dependencies in 
sequential data, even when the dependencies are separated by 
many time steps. On the other hand, Bi-LSTM (which is a 
variation of LSTM) has two separate hidden states, one that 
processes the data in the forward direction (from the first 
sample to the last), and one that processes the data in the 
backward direction (from the last sample to the first). This 
allows Bi- LSTM to capture both forward and backward 
dependencies in the data, which can be useful in some 
applications where the order dependency of the data matters. 
However, Bi-LSTMs can be more powerful than regular 
LSTMs for tasks that require understanding of both forward 
and backward dependencies in the data, but at the cost of an 
increased computational increase and longer training times, 
when compared to LSTMs. The choice between LSTM and 
Bi-LSTM depends on the specificities of the task and the data 
at hand and should be guided by experimental evaluation and 
analysis. 
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