Utilize este identificador para referenciar este registo: http://hdl.handle.net/20.500.11960/2857
Título: Deployment of a smart and predictive maintenance system in an industrial case study
Autores: Alves, Filipe
Badikyan, Hasmik
Moreira, António H. J.
Azevedo, João
Moreira, Pedro Miguel
Romero, Luís
Leitao, Paulo
Palavras-chave: Industrial maintenance
Predictive maintenance
Intelligent decision support
Augmented reality
Data: 2020
Editora: IEEE
Citação: Alves, F., Badikyan, H., Moreira, A. H. J., Azevedo, J., Moreirea, P. M., Romero, L. & Leitão, P. (2020). Deployment of a smart and predictive maintenance system in an industrial case study. In TU Delft (Org.), 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), (pp. 493-498). IEEE. https://doi.org/10.1109/ISIE45063.2020.9152441.
Resumo: Industrial manufacturing environments are often characterized as being stochastic, dynamic and chaotic, being crucial the implementation of proper maintenance strategies to ensure the production efficiency, since the machines’ breakdown leads to a degradation of the system performance, causing the loss of productivity and business opportunities. In this context, the use of emergent ICT technologies, such as Internet of Things (IoT), machine learning and augmented reality, allows to develop smart and predictive maintenance systems, contributing for the reduction of unplanned machines’ downtime by predicting possible failures and recovering faster when they occur. This paper describes the deployment of a smart and predictive maintenance system in an industrial case study, that considers IoT and machine learning technologies to support the online and real-time data collection and analysis for the earlier detection of machine failures, allowing the visualization, monitoring and schedule of maintenance interventions to mitigate the occurrence of such failures. The deployed system also integrates machine learning and augmented reality technologies to support the technicians during the execution of maintenance interventions.
URI: http://hdl.handle.net/20.500.11960/2857
ISBN: 978-7281-5635-4
ISSN: 2163-5145
Aparece nas colecções:ESTG - Artigos indexados à WoS/Scopus

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Deployment_of_a_Smart_and_Predictive_Maintenance_System_in_an_Industrial_Case_Study.pdf3.62 MBAdobe PDFVer/Abrir


Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.